Sándor Farkas, MD

Total Page:16

File Type:pdf, Size:1020Kb

Sándor Farkas, MD ANALYSIS OF PHARMACODYNAMICS OF TOLPERISONE-TYPE CENTRALLY ACTING MUSCLE RELAXANTS IN NON-CLINICAL STUDIES AND RESEARCH INTO PRECLINICAL MODELLING OF MIGRAINE Dissertation for the degree of Doctor of Philosophy (PhD) Sándor Farkas, MD Doctoral School of Pharmaceutical Sciences Neuropharmacology Programme Doctoral School Leader: Prof. Dr. Erika Pintér Programme Leader: Prof. Dr. Erika Pintér Supervisor: Prof. Dr. Zsuzsanna Helyes Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs Pécs, 2016 Table of contents List of Abbreviations ..................................................................................................................... 5 1 Preface .................................................................................................................................. 7 2 Chapter 1: Pharmacodynamics of tolperisone-type centrally acting muscle relaxants .............. 7 2.1 Introduction .............................................................................................................................. 7 2.1.1 General objectives ............................................................................................................ 7 2.1.2 Neuropharmacological studies on efficacy and side effects in mice ............................. 10 2.1.2.1 Studies of the therapeutic index ................................................................................ 10 2.1.2.2 Study on oral effectiveness and duration of action ................................................... 11 2.1.3 Instrumental neurophysiological studies in unconscious cats and rats ......................... 11 2.1.4 Studies on the molecular mechanism of action of tolperisone-type drugs ................... 13 2.1.5 Drugs used in comparative pharmacological studies ..................................................... 15 2.1.6 Summary of specific objectives ...................................................................................... 16 2.2 Methods ................................................................................................................................. 17 2.2.1 Neuropharmacological studies on efficacy and side effects in mice ............................. 17 2.2.1.1 GYKI 20039-induced tremor test ................................................................................ 17 2.2.1.2 Morphine-induced Straub tail test ............................................................................. 18 2.2.1.3 Rotarod test ................................................................................................................ 19 2.2.1.4 Locomotor activity...................................................................................................... 19 2.2.1.5 Weight-lifting test ...................................................................................................... 19 2.2.1.6 Thiopental sleeping time ............................................................................................ 20 2.2.2 Instrumental neurophysiological studies in unconscious cats ....................................... 20 2.2.2.1 Animals ....................................................................................................................... 20 2.2.2.2 Standard surgery in cats ............................................................................................. 20 2.2.2.3 A special technique for quantitative evaluation of triggered electrophysiological events ......................................................................................................................... 21 2.2.2.4 Flexor reflex in intact cats .......................................................................................... 22 2.2.2.5 Flexor reflex in spinal cats .......................................................................................... 23 2.2.2.6 Patellar reflex in cats .................................................................................................. 23 2.2.2.7 Study on the reticulospinal control of the patellar reflex in cats ............................... 23 2.2.2.8 Spinal root potentials evoked by tibial nerve stimulation in cats .............................. 24 2.2.2.9 Intercollicular decerebrate rigidity in cats ................................................................. 25 2.2.3 Instrumental neurophysiological studies in unconscious rats ....................................... 25 2.2.3.1 Intercollicular decerebrate rigidity in rats .................................................................. 25 2.2.3.2 Studies in anaesthetised spinal rats in vivo................................................................ 26 2.2.4 Studies in the isolated hemisected rat spinal cord in vitro ............................................ 29 2.2.4.1 Spinal root potential studies (in vitro) ....................................................................... 29 2.2.4.2 Spinal cord grease gap method (in vitro) ................................................................... 30 2.2.4.3 Data acquisition and analysis in the in vitro hemisected spinal cord studies ............ 30 2.2.5 Patch-clamp analysis of effects on voltage-gated channels .......................................... 31 2.2.5.1 Preparation of sensory neurones ............................................................................... 31 Page 2 of 122 2.2.5.2 Whole-cell patch-clamp recording and analysis ........................................................ 31 2.2.6 Materials ........................................................................................................................ 32 2.3 Results .................................................................................................................................... 33 2.3.1 Neuropharmacological studies in mice .......................................................................... 33 2.3.1.1 GYKI 20039-induced tremor test ................................................................................ 33 2.3.1.2 Straub tail, rotarod, locomotor and weight-lifting tests and therapeutic indices ..... 35 2.3.1.3 Thiopental sleeping time ............................................................................................ 36 2.3.2 Instrumental neurophysiological studies in unconscious cats ....................................... 37 2.3.2.1 Flexor reflex in intact cats .......................................................................................... 37 2.3.2.2 Flexor reflex in spinal cats. ......................................................................................... 41 2.3.2.3 Patellar reflex in cats .................................................................................................. 43 2.3.2.4 Study on the reticulospinal control of the patellar reflex in cats ............................... 44 2.3.2.5 Spinal root potentials evoked by tibial nerve stimulation in cats .............................. 45 2.3.2.6 Intercollicular decerebrate rigidity in cats ................................................................. 48 2.3.3 Instrumental neurophysiological studies in unconscious rats ....................................... 50 2.3.3.1 Investigation of the ventral root reflex potentials ..................................................... 50 2.3.3.2 Neuronal excitability test ........................................................................................... 51 2.3.3.3 Study of feed-forward inhibition ................................................................................ 53 2.3.3.4 Study of recurrent inhibition ...................................................................................... 53 2.3.3.5 Study of afferent nerve conduction ........................................................................... 54 2.3.3.6 Intercollicular decerebrate rigidity in rats .................................................................. 54 2.3.4 Studies in the isolated hemisected rat spinal cord in vitro ............................................ 55 2.3.4.1 Spinal root potential studies ...................................................................................... 55 2.3.4.2 Spinal cord grease gap study ...................................................................................... 61 2.3.5 Patch-clamp analysis of effects on voltage-gated channels .......................................... 62 2.3.5.1 Effects on voltage-gated sodium channels ................................................................ 62 2.3.5.2 Effects on voltage-gated calcium channels ................................................................ 68 2.3.5.3 Effects on voltage-gated potassium channels ............................................................ 71 2.4 Discussion ............................................................................................................................... 72 2.5 Summary of conclusions ......................................................................................................... 85 2.6 Epilogue .................................................................................................................................. 87 2.7 References .............................................................................................................................. 88 3 Chapter 2: Preclinical modelling of migraine ......................................................................... 94 3.1 Introduction ...........................................................................................................................
Recommended publications
  • WHO Drug Information Vol. 12, No. 3, 1998
    WHO DRUG INFORMATION VOLUME 12 NUMBER 3 • 1998 RECOMMENDED INN LIST 40 INTERNATIONAL NONPROPRIETARY NAMES FOR PHARMACEUTICAL SUBSTANCES WORLD HEALTH ORGANIZATION • GENEVA Volume 12, Number 3, 1998 World Health Organization, Geneva WHO Drug Information Contents Seratrodast and hepatic dysfunction 146 Meloxicam safety similar to other NSAIDs 147 Proxibarbal withdrawn from the market 147 General Policy Issues Cholestin an unapproved drug 147 Vigabatrin and visual defects 147 Starting materials for pharmaceutical products: safety concerns 129 Glycerol contaminated with diethylene glycol 129 ATC/DDD Classification (final) 148 Pharmaceutical excipients: certificates of analysis and vendor qualification 130 ATC/DDD Classification Quality assurance and supply of starting (temporary) 150 materials 132 Implementation of vendor certification 134 Control and safe trade in starting materials Essential Drugs for pharmaceuticals: recommendations 134 WHO Model Formulary: Immunosuppressives, antineoplastics and drugs used in palliative care Reports on Individual Drugs Immunosuppresive drugs 153 Tamoxifen in the prevention and treatment Azathioprine 153 of breast cancer 136 Ciclosporin 154 Selective serotonin re-uptake inhibitors and Cytotoxic drugs 154 withdrawal reactions 136 Asparaginase 157 Triclabendazole and fascioliasis 138 Bleomycin 157 Calcium folinate 157 Chlormethine 158 Current Topics Cisplatin 158 Reverse transcriptase activity in vaccines 140 Cyclophosphamide 158 Consumer protection and herbal remedies 141 Cytarabine 159 Indiscriminate antibiotic
    [Show full text]
  • Current Awareness in Clinical Toxicology Editors: Damian Ballam Msc and Allister Vale MD
    Current Awareness in Clinical Toxicology Editors: Damian Ballam MSc and Allister Vale MD April 2015 CONTENTS General Toxicology 9 Metals 44 Management 22 Pesticides 49 Drugs 23 Chemical Warfare 51 Chemical Incidents & 36 Plants 52 Pollution Chemicals 37 Animals 52 CURRENT AWARENESS PAPERS OF THE MONTH Acute toxicity profile of tolperisone in overdose: observational poison centre-based study Martos V, Hofer KE, Rauber-Lüthy C, Schenk-Jaeger KM, Kupferschmidt H, Ceschi A. Clin Toxicol 2015; online early: doi: 10.3109/15563650.2015.1022896: Introduction Tolperisone is a centrally acting muscle relaxant that acts by blocking voltage-gated sodium and calcium channels. There is a lack of information on the clinical features of tolperisone poisoning in the literature. The aim of this study was to investigate the demographics, circumstances and clinical features of acute overdoses with tolperisone. Methods An observational study of acute overdoses of tolperisone, either alone or in combination with one non-steroidal anti-inflammatory drug in a dose range not expected to cause central nervous system effects, in adults and children (< 16 years), reported to our poison centre between 1995 and 2013. Current Awareness in Clinical Toxicology is produced monthly for the American Academy of Clinical Toxicology by the Birmingham Unit of the UK National Poisons Information Service, with contributions from the Cardiff, Edinburgh, and Newcastle Units. The NPIS is commissioned by Public Health England Results 75 cases were included: 51 females (68%) and 24 males (32%); 45 adults (60%) and 30 children (40%). Six adults (13%) and 17 children (57%) remained asymptomatic, and mild symptoms were seen in 25 adults (56%) and 10 children (33%).
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,722,938 Sunshine Et Al
    United States Patent (19) 11 Patent Number: 4,722,938 Sunshine et al. (45. Date of Patent: Feb. 2, 1988 (54 METHODS FOR USING 82,717, copy of patent and English translation thereof; MUSCULOSKELETAL RELAXANTS (10/83). Rego, "Mio-Relaxantes No Tratmento Das Lombalgias 75 Inventors: Abraham Sunshine, New York; Agudas E Das Lombo-Ciaticas Recentes'Muscle Re Eugene M. Laska, Larchmont; laxants in the Treatment of Acute Lumbalgias and Re Carole E. Siegel, Mamaroneck, all of cent Lumbo-Sciatica Cases, Acta Reumatologica Por N.Y. tuguesa, II, 2:363-364, (1974), copy of the original and English translation thereof. 73 Assignee: Analgesic Associates, Larchmont, Schror, "Analgetisch-Antiphlogistische Therapie Von N.Y. Schmerzzustanden des Bewegungsapparates'Anal 21 Appl. No.: 815,502 gesic-Antiphlogistic Therapy of Locomotor System Pain), Therapiewoche, 28, 5657-5663, (1978), copy of the (22 Filed: Jan. 2, 1986 original and English translation thereof. Schar, "Medikamentose Behandlung von Lumbois Related U.S. Application Data chialgien'Drug Treatment of the Lumbago-Sciatic Syndrome), Schweiz, Rundschau Med. (Praxis), vol. 68, 63 Continuation of Ser. No. 686,380, Dec. 26, 1984, aban No. 5, pp. 141-142, (Jan. 30, 1979), copy of original doned. article and English translation thereof. 51 Int. Cl....................... A61K 31/19; A61K 31/27 Kolodny and Klipper, "Bone and Joint Diseases in the Elderly', Hospital Practice, pp. 91-101, (Nov. 1976). (52) - O - 514/479; 514/568 Nascimento, "Use of an Association Containing an An 58 Field of Search ................................ 514/568, 479 algesic, a Muscle Relaxant and Vitamin B Complex in (56) References Cited Degenerative Joint Diseases, Extra-Articular Rheu matic Ailments and Traumatic Afflictions', F med, FOREIGN PATENT DOCUMENTS (BR), 83(3):361-363, (1981), original article and English 2121529 12/1971 France.
    [Show full text]
  • Symptomatic Pharmacotherapy in ALS: Data Analysis from a Platform-Based Medication Management Programme
    PostScript J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-322938 on 21 April 2020. Downloaded from LETTER during the observation. Riluzole was ALS were provided with a mean number the drug most commonly used (93% of 3.2 symptomatic drugs. However, of patients; n=2219). Symptomatic the number of drugs per patient varied Symptomatic pharmacotherapy drugs were assorted to pharmacological substantially (figure 1D). Furthermore, in ALS: data analysis from a domains and to the attainment of treat- we identified an increasing number of ment goals (figure 1B). An overview prescribed drugs per patient in correla- platform- based medication and ranking of symptomatic drugs are tion to advanced stages of King’s clinical management programme summarised in the online supplementary stages of ALS (figure 1C).4 file 2. Based on the number of patients who received the drug, the following top INTRODUCTION 10 symptomatic medicines were identi- DISCUSSION Although symptomatic medicines fied (in decreasing order): mirtazapine, The symptomatic medication was anal- constitute an important intervention ipratropium bromide, pirenzepine, ysed at specialised ALS centres in in amyotrophic lateral sclerosis (ALS), citalopram, lorazepam, baclofen, metam- Germany collaborating on multidisci- few systematic investigations into drug izole, quinine, fentanyl and tetrahydro- plinary managed care. Data assessment management have been reported so far.1 cannabinol:cannabidiol. Patients with was facilitated by the common use of Furthermore, symptomatic pharmaco- therapy is constantly evolving with an increasing number of drugs being used. Therefore, more detailed information on drug prescription must be obtained to monitor the current standards of care, identify potential shortcomings in drug management and elucidate progress in symptomatic pharmacotherapy.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn Et Al
    US 2004O224012A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0224012 A1 Suvanprakorn et al. (43) Pub. Date: Nov. 11, 2004 (54) TOPICAL APPLICATION AND METHODS Related U.S. Application Data FOR ADMINISTRATION OF ACTIVE AGENTS USING LIPOSOME MACRO-BEADS (63) Continuation-in-part of application No. 10/264,205, filed on Oct. 3, 2002. (76) Inventors: Pichit Suvanprakorn, Bangkok (TH); (60) Provisional application No. 60/327,643, filed on Oct. Tanusin Ploysangam, Bangkok (TH); 5, 2001. Lerson Tanasugarn, Bangkok (TH); Suwalee Chandrkrachang, Bangkok Publication Classification (TH); Nardo Zaias, Miami Beach, FL (US) (51) Int. CI.7. A61K 9/127; A61K 9/14 (52) U.S. Cl. ............................................ 424/450; 424/489 Correspondence Address: (57) ABSTRACT Eric G. Masamori 6520 Ridgewood Drive A topical application and methods for administration of Castro Valley, CA 94.552 (US) active agents encapsulated within non-permeable macro beads to enable a wider range of delivery vehicles, to provide longer product shelf-life, to allow multiple active (21) Appl. No.: 10/864,149 agents within the composition, to allow the controlled use of the active agents, to provide protected and designable release features and to provide visual inspection for damage (22) Filed: Jun. 9, 2004 and inconsistency. US 2004/0224012 A1 Nov. 11, 2004 TOPCAL APPLICATION AND METHODS FOR 0006 Various limitations on the shelf-life and use of ADMINISTRATION OF ACTIVE AGENTS USING liposome compounds exist due to the relatively fragile LPOSOME MACRO-BEADS nature of liposomes. Major problems encountered during liposome drug Storage in vesicular Suspension are the chemi CROSS REFERENCE TO OTHER cal alterations of the lipoSome compounds, Such as phos APPLICATIONS pholipids, cholesterols, ceramides, leading to potentially toxic degradation of the products, leakage of the drug from 0001) This application claims the benefit of U.S.
    [Show full text]
  • Clinical Manifestation of Juvenile and Pediatric HD Patients: a Retrospective Case Series
    brain sciences Article Clinical Manifestation of Juvenile and Pediatric HD Patients: A Retrospective Case Series 1, , 2, 2 1 Jannis Achenbach * y, Charlotte Thiels y, Thomas Lücke and Carsten Saft 1 Department of Neurology, Huntington Centre North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany; [email protected] 2 Department of Neuropaediatrics and Social Paediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; [email protected] (C.T.); [email protected] (T.L.) * Correspondence: [email protected] These two authors contribute to this paper equally. y Received: 30 April 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: Background: Studies on the clinical manifestation and course of disease in children suffering from Huntington’s disease (HD) are rare. Case reports of juvenile HD (onset 20 years) describe ≤ heterogeneous motoric and non-motoric symptoms, often accompanied with a delay in diagnosis. We aimed to describe this rare group of patients, especially with regard to socio-medical aspects and individual or common treatment strategies. In addition, we differentiated between juvenile and the recently defined pediatric HD population (onset < 18 years). Methods: Out of 2593 individual HD patients treated within the last 25 years in the Huntington Centre, North Rhine-Westphalia (NRW), 32 subjects were analyzed with an early onset younger than 21 years (1.23%, juvenile) and 18 of them younger than 18 years of age (0.69%, pediatric). Results: Beside a high degree of school problems, irritability or aggressive behavior (62.5% of pediatric and 31.2% of juvenile cases), serious problems concerning the social and family background were reported in 25% of the pediatric cohort.
    [Show full text]
  • Clinical Trial Protocol: 201
    Protocol: 201 Amendment 1 Neurana Pharmaceuticals, Inc. 02 May 2019 version 2.0 Confidential CLINICAL TRIAL PROTOCOL: 201 Title: Dose Ranging Study of Tolperisone in Acute Muscle Spasm of the Back, “STAR Study” Substance Tolperisone hydrochloride Identifier IND number 069169 Protocol Number 201 Sponsor Neurana Pharmaceuticals, Inc. 4370 La Jolla Village Drive, Suite 860 San Diego, CA 92122 Date of Protocol 02 MAY 2019 version Amendment # 2.0 1 Previous protocol 15Nov2018, version 1.0 (initial protocol) Sponsor Tom Wessel, M.D. Representative Chief Medical Officer Neurana Pharmaceuticals, Inc. Conduct: In accordance with the ethical principles that originate from the Declaration of Helsinki and that are consistent with International Council for Harmonisation Guidelines on Good Clinical Practice (ICH E6 GCP) and regulatory requirements as applicable Confidentiality Statement The present protocol is the sole property of Neurana Pharmaceuticals, Inc. and it may not in full or in part be passed on, reproduced, published or otherwise disclosed without the express permission of Neurana Pharmaceuticals, Inc. Page 1 of 60 Protocol: 201 Amendment 1 Neurana Pharmaceuticals, Inc. 02 May 2019 version 2.0 Confidential 1.2. Principal Investigator (PI) – Amendment 1 I have read and understand the contents of this clinical protocol 201, the STAR Study, and will adhere to the study requirements as presented, including all statements regarding confidentiality. In addition, I will conduct the study in accordance with current International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Guideline for Good Clinical Practice and applicable regulatory requirements: PI SIGNATURE DATE (DD/MMM/YYYY) PRINTED NAME ____________________________________________ Page 3 of 60 Protocol: 201 Amendment 1 Neurana Pharmaceuticals, Inc.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Eperisone-Induced Anaphylaxis: Pharmacovigilance Data and Results of Allergy Testing
    Allergy Asthma Immunol Res. 2019 Jan;11(1):e18 https://doi.org/10.4168/aair.2019.11.e18 pISSN 2092-7355·eISSN 2092-7363 Original Article Eperisone-Induced Anaphylaxis: Pharmacovigilance Data and Results of Allergy Testing Kyung Hee Park,1,2 Sang Chul Lee,1,2 Ji Eun Yuk,2 Sung-Ryeol Kim,1,2 Jae-Hyun Lee,1,2 Jung-Won Park1,2* 1Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea 2Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea Received: Aug 6, 2018 ABSTRACT Revised: Sep 10, 2018 Accepted: Sep 22, 2018 Purpose: Eperisone is an oral muscle relaxant used in musculoskeletal disorders causing Correspondence to muscle spasm and pain. For more effective pain control, eperisone is usually prescribed Jung-Won Park, MD, PhD together with nonsteroidal anti-inflammatory drugs (NSAIDs). As such, eperisone may Division of Allergy and Immunology, have been overlooked as the cause of anaphylaxis compared with NSAIDs. This study aimed Department of Internal Medicine, Yonsei to analyze the adverse drug reaction (ADR) reported in Korea and suggest an appropriate University College of Medicine, 50-1 Yonsei-ro, diagnostic approach for eperisone-induced anaphylaxis. Seodaemun-gu, Seoul 03722, Korea. Tel: +82- 2-2228-1961; Fax: +82-2-393-6884; Methods: We reviewed eperisone-related pharmacovigilance data (Korea Institute of Drug E-mail: [email protected] Safety-Korea Adverse Event Reporting System [KIDS-KAERS]) reported in Korea from 2010 to 2015. ADRs with causal relationship were selected. Clinical manifestations, severity, Copyright © 2019 The Korean Academy of outcomes, and re-exposure information were analyzed.
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • Pharmaceuticals Appendix
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ADAPALENE 106685-40-9 ABANOQUIL 90402-40-7 ADAPROLOL 101479-70-3 ABECARNIL 111841-85-1 ADEMETIONINE 17176-17-9 ABLUKAST 96566-25-5 ADENOSINE PHOSPHATE 61-19-8 ABUNIDAZOLE 91017-58-2 ADIBENDAN 100510-33-6 ACADESINE 2627-69-2 ADICILLIN 525-94-0 ACAMPROSATE 77337-76-9 ADIMOLOL 78459-19-5 ACAPRAZINE 55485-20-6 ADINAZOLAM 37115-32-5 ACARBOSE 56180-94-0 ADIPHENINE 64-95-9 ACEBROCHOL 514-50-1 ADIPIODONE 606-17-7 ACEBURIC ACID 26976-72-7 ADITEREN 56066-19-4 ACEBUTOLOL 37517-30-9 ADITOPRIME 56066-63-8 ACECAINIDE 32795-44-1 ADOSOPINE 88124-26-9 ACECARBROMAL 77-66-7 ADOZELESIN 110314-48-2 ACECLIDINE 827-61-2 ADRAFINIL 63547-13-7 ACECLOFENAC 89796-99-6 ADRENALONE 99-45-6 ACEDAPSONE 77-46-3 AFALANINE 2901-75-9 ACEDIASULFONE SODIUM 127-60-6 AFLOQUALONE 56287-74-2 ACEDOBEN 556-08-1 AFUROLOL 65776-67-2 ACEFLURANOL 80595-73-9 AGANODINE 86696-87-9 ACEFURTIAMINE 10072-48-7 AKLOMIDE 3011-89-0 ACEFYLLINE CLOFIBROL 70788-27-1
    [Show full text]