Introduction of Statistical Process Control to Turn-Around Time Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Introduction of Statistical Process Control to Turn-Around Time Analysis MATERIEL SERVICE DEPARTMENT UNIVERSITY OF MICHIGAN HOSPITALS Introduction of Statistical Process Control to Turn-Around Time Analysis DATE: December 12, 1991 TO: John Gialanella Director, Materiel Services University of Michigan Hospitals Richard J. Coffey, Ph.D. Director, Management Systems University of Michigan Hospitals FROM: George K. Chen Laurie D’Alleva Douglas M. Donaldson Management Systems SUBJECT: Final project report. C (2) TABLE OF CONTENTS Executive Summary 3 Introduction 4 Approach 5 Methodology 8 Results 15 Recommendations 21 References 25 Appendices 26 (3) EXECUTIVE SUMMARY This project demonstrates methods to better organize turn-around time (TAT) data used to measure performance in the Materiel Service Center (MSC). The data can be meaningfully analyzed using the ideas and methods of Statistical Process Control (SPC), such as control charts and scatter plots. By constructing these charts and graphs, an improved methodology for TAT data analysis became apparent. The control charts show whether or not the TAT’s, when standardized by the number of lines and deliveries for each run, are in control for each of the four different delivery types (SUPP, STAT, REQ, PAR). This information can help management come to conclusions regarding the delivery system. By calculating appropriate control limits, unusual or unsatisfactory times can be easily seen on graphs. By following a progression of charts over time, management will be better equipped to locate problem areas and determine possible courses of action to improve performance in the MSC. The charts are also excellent for monitoring improvements as changes in the delivery system are made, as the graphs are easy to interpret and full of meaning. Seven major recommendations are being made: 1. The control charts introduced by this project should be made a part of the standard routine in the MSC. 2. The MSC should increase inventory levels for the 13 items identified as major contributors to the number of stockouts. 3. It is recommended that the MSC keep better track of changes in stockout items. 4. A hospital wide, synchronized time system should be used when recording delivery times to increase the accuracy of the TAT’s. 5. The databases used by the department should be reconstructed for more efficient data storage. 6. Further study of the relationship between the distance of a unit from the MSC and the service provided to that unit is recommended. 7. The department should utilize SPC methods in order to effectively summarize and reduce the data collected to concise, meaningful charts and graphs. (4) INTRODUCTION The purpose of this project was to demonstrate methods to more effectively represent the overall efficiency and performance of the Materiel Service Center. The MSC delivers items from its inventory supply to various units throughout the University of Michigan Hospital. The elapsed subtimes for specific steps in this order-filling process are recorded and summed for a net TAT for each delivery. This project has implemented the techniques and ideas of statistical process control (SPC) to meaningfully organize this historical data, to represent the overall efficiency and performance of the department. Effective measures of organizational performance have been developed, summarized and applied toward producing graphical representations of the data. In the future, analyzing TAT data by these methods will help management reach better conclusions about departmental performance, and, in turn, better manage the Materiel Services Department. (5) APPROACH In order to determine the most effective and useful manner in which to organize the TAT data, the following approach was used: 1. Operational Definitions. Before any analysis can take place, it is necessary to have art understanding of departmental terminology. Through discussions management, and observation of the order-filling process, the “language” of the MSC became apparent. 2. Flowcharting. In order to effectively analyze the organization, a thorough understanding of departmental processes is necessary. This was achieved by mapping the actual flow of people, information, and materiel goods through the process of receiving, picking, and delivering a materiel order. 3. Client Input. After soliciting input on how data collected in the MSC will ultimately be used, current performance measures were evaluated for relevance. By determining precisely what uses the client envisions for the data (and, conversely, what uses are not anticipated), the portions of the data that are important were discriminated from those which are not. 4. Historical Data Analysis. The historical raw data collected over the past several months was examined, to develop effective measures of performance for the department. Relevant issues included speed, accuracy and reliability of the delivered orders. Appropriate statistics were found, which focus on patterns of performance rather than individual events. Unusual or unsatisfactory times were examined to determine their root cause and whether or not such “outliers” call for action on the part of management. (6) 5. Graphic Analysis. After effective measures of performance were determined, they were applied toward producing graphic representations of the data. Traditional SPC methods of graphical monitoring were utilized, including control charts, scatter plots, and Pareto diagrams. (7) METHODOLOGY One of the most common methodologies for quality improvement is statistical process control, or SPC. The goal of SPC is to achieve process stability and improve capability, through the reduction of variability (Montgomery, 1991, p. 101). It uses seven major tools in reaching this goal, as listed below: 1. Control Chart 5. Pareto diagram 2. Process flow diagram 6. Scatter plot 3. Cause-and-effect diagram 7. Histogram 4. Checksheet This project sought to find the most effective manner to graphically represent TAT data, using one or more of the above methods. It was found that control charts were most useful in interpreting MSC data. However, Pareto diagrams and scatter plots were also used, albeit to a lesser extent. The intent here is to demonstrate the use of these techniques in analyzing the effectiveness of the department. Admitedly, the following discussion is nothing more than an introduction to the SPC methodology. The greatest benefit to be gained from such a demonstration will be a new perspective on the Materiel Services Department. Simply adopting an “SPC way of thinking” will help promote the type of environment in which actual SPC techniques can be successfully implemented. Although traditionally applied to manufacturing processes, SPC can also be utilized in nonmanufacturing situations, such as the case in the MSC. This type of SPC application requires more flexibility and creativity than that (8) ( normally required for a typical manufacturing setting. In the literature concerning SPC, two main reasons have been observed to account for this difference: 1. Most nonmanufacturing operations do not have a natural measurement system that allows the analyst to easily define quality. 2. The system that is to be improved is usually fairly obvious in a manufacturing setting, while the observability of the process in a nonmanufacturing setting may • be fairly low. (Montgomery, 1991, p. 137) Although the Materiel Service Department may appear to have a “natural measurement system”, in the form of TAT data, there are numerous other measures that could be used to judge departmental performance. In addition, the process by which materiel orders are filled is complex, influenced many • by factors which may not be readily apparent. This is in contrast to a straightforward assembly line process, common in most manufacturing environments. The fact that the MSC is a nonmanufacturing organization has no special implications for the construction of charts other than control charts. The main area of concern when creating Pareto diagrams, scatter plots and the like, is the use of relevant statistics for the desired analysis. These types of graphical tools are generally much more intuitive than control charts, and a background of statistical training is not always a prerequisite for their use. Control charts, on the other hand, are grounded more in statistical theory, and those not familiar with such concepts may have difficulty interpreting - Er (• (9) them. As a result, these potential educational demands should be considered whenever an organization plans to implement SPC techniques. In applying SPC to develop control charts, a primary issue is deciding which types of charts to construct: (1) Variable charts, (2) Attribute charts, or (3) Charts for individuals. Variable charts track such measures as the mean, range, and variance of a process, well-suited to traditional manufacturing procedures. Attribute charts monitor fraction nonconforming, number nonconforming, and the like. This may be appropriate when quality is measured in terms of “good/bad”, satisfactory/unsatisfactory, and so on, rather than any hard numerical specifications. Control charts for individuals are sometimes used when it is difficult to obtain more than one process measurement at a time, or when the end-product does not follow from a constant, standardized procedure. Variable control charts have an underlying assumption that influence the type of data they can be used to track. The use of such charts implies that the ideal state of the system is a state of zero variability. It implies a quality characteristic with a desired target
Recommended publications
  • X-Bar Charts
    NCSS Statistical Software NCSS.com Chapter 244 X-bar Charts Introduction This procedure generates X-bar control charts for variables. The format of the control charts is fully customizable. The data for the subgroups can be in a single column or in multiple columns. This procedure permits the defining of stages. The center line can be entered directly or estimated from the data, or a sub-set of the data. Sigma may be estimated from the data or a standard sigma value may be entered. A list of out-of-control points can be produced in the output, if desired, and means may be stored to the spreadsheet. X-bar Control Charts X-bar charts are used to monitor the mean of a process based on samples taken from the process at given times (hours, shifts, days, weeks, months, etc.). The measurements of the samples at a given time constitute a subgroup. Typically, an initial series of subgroups is used to estimate the mean and standard deviation of a process. The mean and standard deviation are then used to produce control limits for the mean of each subgroup. During this initial phase, the process should be in control. If points are out-of-control during the initial (estimation) phase, the assignable cause should be determined and the subgroup should be removed from estimation. Determining the process capability (see R & R Study and Capability Analysis procedures) may also be useful at this phase. Once the control limits have been established of the X-bar charts, these limits may be used to monitor the mean of the process going forward.
    [Show full text]
  • Propensity Scores up to Head(Propensitymodel) – Modify the Number of Threads! • Inspect the PS Distribution Plot • Inspect the PS Model
    Overview of the CohortMethod package Martijn Schuemie CohortMethod is part of the OHDSI Methods Library Cohort Method Self-Controlled Case Series Self-Controlled Cohort IC Temporal Pattern Disc. Case-control New-user cohort studies using Self-Controlled Case Series A self-controlled cohort A self-controlled design, but Case-control studies, large-scale regressions for analysis using fews or many design, where times preceding using temporals patterns matching controlss on age, propensity and outcome predictors, includes splines for exposure is used as control. around other exposures and gender, provider, and visit models age and seasonality. outcomes to correct for time- date. Allows nesting of the Estimation methods varying confounding. study in another cohort. Patient Level Prediction Feature Extraction Build and evaluate predictive Automatically extract large models for users- specified sets of featuress for user- outcomes, using a wide array specified cohorts using data in of machine learning the CDM. Prediction methods algorithms. Empirical Calibration Method Evaluation Use negative control Use real data and established exposure-outcomes pairs to reference sets ass well as profile and calibrate a simulations injected in real particular analysis design. data to evaluate the performance of methods. Method characterization Database Connector Sql Render Cyclops Ohdsi R Tools Connect directly to a wide Generate SQL on the fly for Highly efficient Support tools that didn’t fit range of databases platforms, the various SQLs dialects. implementations of regularized other categories,s including including SQL Server, Oracle, logistic, Poisson and Cox tools for maintaining R and PostgreSQL. regression. libraries. Supporting packages Under construction Technologies CohortMethod uses • DatabaseConnector and SqlRender to interact with the CDM data – SQL Server – Oracle – PostgreSQL – Amazon RedShift – Microsoft APS • ff to work with large data objects • Cyclops for large scale regularized regression Graham study steps 1.
    [Show full text]
  • Generalized Scatter Plots
    Generalized scatter plots Daniel A. Keim a Abstract Scatter Plots are one of the most powerful and most widely used b techniques for visual data exploration. A well-known problem is that scatter Ming C. Hao plots often have a high degree of overlap, which may occlude a significant Umeshwar Dayal b portion of the data values shown. In this paper, we propose the general­ a ized scatter plot technique, which allows an overlap-free representation of Halldor Janetzko and large data sets to fit entirely into the display. The basic idea is to allow the Peter Baka ,* analyst to optimize the degree of overlap and distortion to generate the best­ possible view. To allow an effective usage, we provide the capability to zoom ' University of Konstanz, Universitaetsstr. 10, smoothly between the traditional and our generalized scatter plots. We iden­ Konstanz, Germany. tify an optimization function that takes overlap and distortion of the visualiza­ bHewlett Packard Research Labs, 1501 Page tion into acccount. We evaluate the generalized scatter plots according to this Mill Road, Palo Alto, CA94304, USA. optimization function, and show that there usually exists an optimal compro­ mise between overlap and distortion . Our generalized scatter plots have been ' Corresponding author. applied successfully to a number of real-world IT services applications, such as server performance monitoring, telephone service usage analysis and financial data, demonstrating the benefits of the generalized scatter plots over tradi­ tional ones. Keywords: scatter plot; overlapping; distortion; interpolation; smoothing; interactions Introduction Motivation Large amounts of multi-dimensional data occur in many important appli­ cation domains such as telephone service usage analysis, sales and server performance monitoring.
    [Show full text]
  • Propensity Score Matching with R: Conventional Methods and New Features
    812 Review Article Page 1 of 39 Propensity score matching with R: conventional methods and new features Qin-Yu Zhao1#, Jing-Chao Luo2#, Ying Su2, Yi-Jie Zhang2, Guo-Wei Tu2, Zhe Luo3 1College of Engineering and Computer Science, Australian National University, Canberra, ACT, Australia; 2Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; 3Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China Contributions: (I) Conception and design: QY Zhao, JC Luo; (II) Administrative support: GW Tu; (III) Provision of study materials or patients: GW Tu, Z Luo; (IV) Collection and assembly of data: QY Zhao; (V) Data analysis and interpretation: QY Zhao; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Guo-Wei Tu. Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China. Email: [email protected]; Zhe Luo. Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China. Email: [email protected]. Abstract: It is increasingly important to accurately and comprehensively estimate the effects of particular clinical treatments. Although randomization is the current gold standard, randomized controlled trials (RCTs) are often limited in practice due to ethical and cost issues. Observational studies have also attracted a great deal of attention as, quite often, large historical datasets are available for these kinds of studies. However, observational studies also have their drawbacks, mainly including the systematic differences in baseline covariates, which relate to outcomes between treatment and control groups that can potentially bias results.
    [Show full text]
  • Scatter Plots with Error Bars
    NCSS Statistical Software NCSS.com Chapter 165 Scatter Plots with Error Bars Introduction The Scatter Plots with Error Bars procedure extends the capability of the basic scatter plot by allowing you to plot the variability in Y and X corresponding to each point. Each point on the plot represents the mean or median of one or more values for Y and X within a subgroup. Error bars can be drawn in the Y or X direction, representing the variability associated with each Y and X center point value. The error bars may represent the standard deviation (SD) of the data, the standard error of the mean (SE), a confidence interval, the data range, or percentiles. This plot also gives you the capability of graphing the raw data along with the center and error-bar lines. This procedure makes use of all of the additional enhancement features available in the basic scatter plot, including trend lines (least squares), confidence limits, polynomials, splines, loess curves, and border plots. The following graphs are examples of scatter plots with error bars that you can create with this procedure. This chapter contains information only about options that are specific to the Scatter Plots with Error Bars procedure. For information about the other graphical components and scatter-plot specific options available in this procedure (e.g. regression lines, border plots, etc.), see the chapter on Scatter Plots. 165-1 © NCSS, LLC. All Rights Reserved. NCSS Statistical Software NCSS.com Scatter Plots with Error Bars Data Structure This procedure accepts data in four different input formats. The type of plot that can be created depends on the input format.
    [Show full text]
  • Estimation of Average Total Effects in Quasi-Experimental Designs: Nonlinear Constraints in Structural Equation Models
    Estimation of Average Total Effects in Quasi-Experimental Designs: Nonlinear Constraints in Structural Equation Models Dissertation zur Erlangung des akademischen Grades doctor philosophiae (Dr. phil.) vorgelegt dem Rat der Fakultät für Sozial- und Verhaltenswissenschaften der Friedrich-Schiller-Universität Jena von Dipl.-Psych. Joachim Ulf Kröhne geboren am 02. Juni 1977 in Jena Gutachter: 1. Prof. Dr. Rolf Steyer (Friedrich-Schiller-Universität Jena) 2. PD Dr. Matthias Reitzle (Friedrich-Schiller-Universität Jena) Tag des Kolloquiums: 23. August 2010 Dedicated to Cora and our family(ies) Zusammenfassung Diese Arbeit untersucht die Schätzung durchschnittlicher totaler Effekte zum Vergleich der Wirksam- keit von Behandlungen basierend auf quasi-experimentellen Designs. Dazu wird eine generalisierte Ko- varianzanalyse zur Ermittlung kausaler Effekte auf Basis einer flexiblen Parametrisierung der Kovariaten- Treatment Regression betrachtet. Ausgangspunkt für die Entwicklung der generalisierten Kovarianzanalyse bildet die allgemeine Theo- rie kausaler Effekte (Steyer, Partchev, Kröhne, Nagengast, & Fiege, in Druck). In dieser allgemeinen Theorie werden verschiedene kausale Effekte definiert und notwendige Annahmen zu ihrer Identifikation in nicht- randomisierten, quasi-experimentellen Designs eingeführt. Anhand eines empirischen Beispiels wird die generalisierte Kovarianzanalyse zu alternativen Adjustierungsverfahren in Beziehung gesetzt und insbeson- dere mit den Propensity Score basierten Analysetechniken verglichen. Es wird dargestellt,
    [Show full text]
  • Algebra 1 Regular/Honors – Phase 2 Part 1 TEXTBOOK CHECKOUT
    Algebra 1 Phase 2 – Part 1 Directions: In the pack you will find completed notes with blank TRY IT! and BEAT THE TEST! questions. Read, study, and work through these problems. Focus on trying to do the TRY IT! and BEAT THE TEST! problem to assess your understanding before checking the answers provided at PHASE 2 INSTRUCTIONAL CONTINUITY PLAN the end of the packet. Also included are Independent Practice questions. Complete these and return to your BEGINNING APRIL 16, 2020 teacher/school at a later date. Later, you may be expected to complete the TEST YOURSELF! problems online. (Topic Number 1H after Topic 9 is HONORS ONLY) Topic Date Topic Name Number Completed 9-1 Dot Plots Algebra 1 Regular/Honors – Phase 2 Part 1 9-2 Histograms 9-3 Box Plots – Part 1 TEXTBOOK CHECKOUT: No Textbook Needed 9-4 Box Plots – Part 2 Measures of Center and 9-5 Shapes of Distributions 9-6 Measures of Spread – Part 1 SCHOOL NAME: _____________________ 9-7 Measures of Spread – Part 2 STUDENT NAME: _____________________ 9-8 The Empirical Rule 9-9 Outliers in Data Sets TEACHER NAME: _____________________ 9-1H Normal Distribution 1 What are some things you learned from these sections? Topic Date Topic Name Number Completed Relationship between Two Categorical Variables – Marginal 10-1 and Joint Relative Frequency – Part 1 Relationship between Two Categorical Variables – Marginal 10-2 and Joint Relative Frequency – Part 2 Relationship between Two 10-3 Categorical Variables – Conditional What questions do you still have after studying these Relative Frequency sections? 10-4 Scatter Plot and Function Models 10-5 Residuals and Residual Plots – Part 1 10-6 Residuals and Residual Plots – Part 2 10-7 Examining Correlation 2 Section 9: One-Variable Statistics Section 9 – Topic 1 Dot Plots Statistics is the science of collecting, organizing, and analyzing data.
    [Show full text]
  • A Guide to Creating and Interpreting Run and Control Charts Turning Data Into Information for Improvement Using This Guide
    Institute for Innovation and Improvement A guide to creating and interpreting run and control charts Turning Data into Information for Improvement Using this guide The NHS Institute has developed this guide as a reminder to commissioners how to create and analyse time-series data as part of their improvement work. It should help you ask the right questions and to better assess whether a change has led to an improvement. Contents The importance of time based measurements .........................................4 Run Charts ...............................................6 Control Charts .......................................12 Process Changes ....................................26 Recommended Reading .........................29 The Improving immunisation rates importance Before and after the implementation of a new recall system This example shows yearly figures for immunisation rates of time-based before and after a new system was introduced. The aggregated measurements data seems to indicate the change was a success. 90 Wow! A “significant improvement” from 86% 79% to 86% -up % take 79% 75 Time 1 Time 2 Conclusion - The change was a success! 4 Improving immunisation rates Before and after the implementation of a new recall system However, viewing how the rates have changed within the two periods tells a 100 very different story. Here New system implemented here we see that immunisation rates were actually improving until the new 86% – system was introduced. X They then became worse. 79% – Seeing this more detailed X 75 time based picture prompts a different response. % take-up Now what do you conclude about the impact of the new system? 50 24 Months 5 Run Charts Elements of a run chart A run chart shows a measurement on the y-axis plotted over time (on the x-axis).
    [Show full text]
  • Medians and the Individuals Control Chart the Individuals Control Chart
    Medians and the Individuals Control Chart The individuals control chart is used quite often to monitor processes. It can be used in almost all cases, so it makes the art of deciding which control chart to use extremely easy at times. Not sure? Use the individuals control chart. The individuals control chart is composed of two charts: the X chart where the individual values are plotted and the moving range (mR) chart where the range between consecutive values are plotted. The averages and control limits are also part of the charts. The average moving range (R̅) is used to calculate the control limits on the X chart. If the mR chart has a lot of out of control points, the average moving range will be inflated leading to wider control limits on the X chart. This can lead to missed signals (out of control points) on the X chart. Is there anything you can do when the mR chart has many out of control points to help miss fewer signals on the X chart? Yes, there is. One method is to use the median moving range. The median moving range is impacted much less by large moving range values than the average. Another option is to use the median of the X values in place of the overall average on the X chart. This publication explores using median values for the centerlines on the X and mR charts. We will start with a review of the individuals control chart. Then, the individuals control charts using median values is introduced. The charts look the same – the only difference is the location of the centerlines and control limits.
    [Show full text]
  • Phase I and Phase II - Control Charts for the Variance and Generalized Variance
    Phase I and Phase II - Control Charts for the Variance and Generalized Variance R. van Zyl1, A.J. van der Merwe2 1Quintiles International, [email protected] 2University of the Free State 1 Abstract By extending the results of Human, Chakraborti, and Smit(2010), Phase I control charts are derived for the generalized variance when the mean vector and covariance matrix of multivariate normally distributed data are unknown and estimated from m independent samples, each of size n. In Phase II predictive distributions based on a Bayesian approach are used to construct Shewart-type control limits for the variance and generalized variance. The posterior distribution is obtained by combining the likelihood (the observed data in Phase I) and the uncertainty of the unknown parameters via the prior distribution. By using the posterior distribution the unconditional predictive density functions are derived. Keywords: Shewart-type Control Charts, Variance, Generalized Variance, Phase I, Phase II, Predictive Density 1 Introduction Quality control is a process which is used to maintain the standards of products produced or services delivered. It is nowadays commonly accepted by most statisticians that statistical processes should be implemented in two phases: 1. Phase I where the primary interest is to assess process stability; and 2. Phase II where online monitoring of the process is done. Bayarri and Garcia-Donato(2005) gave the following reasons for recommending Bayesian analysis for the determining of control chart limits: • Control charts are based on future observations and Bayesian methods are very natural for prediction. • Uncertainty in the estimation of the unknown parameters are adequately handled.
    [Show full text]
  • Exploring Spatial Data with Geoda: a Workbook
    Exploring Spatial Data with GeoDaTM : A Workbook Luc Anselin Spatial Analysis Laboratory Department of Geography University of Illinois, Urbana-Champaign Urbana, IL 61801 http://sal.uiuc.edu/ Center for Spatially Integrated Social Science http://www.csiss.org/ Revised Version, March 6, 2005 Copyright c 2004-2005 Luc Anselin, All Rights Reserved Contents Preface xvi 1 Getting Started with GeoDa 1 1.1 Objectives . 1 1.2 Starting a Project . 1 1.3 User Interface . 3 1.4 Practice . 5 2 Creating a Choropleth Map 6 2.1 Objectives . 6 2.2 Quantile Map . 6 2.3 Selecting and Linking Observations in the Map . 10 2.4 Practice . 11 3 Basic Table Operations 13 3.1 Objectives . 13 3.2 Navigating the Data Table . 13 3.3 Table Sorting and Selecting . 14 3.3.1 Queries . 16 3.4 Table Calculations . 17 3.5 Practice . 20 4 Creating a Point Shape File 22 4.1 Objectives . 22 4.2 Point Input File Format . 22 4.3 Converting Text Input to a Point Shape File . 24 4.4 Practice . 25 i 5 Creating a Polygon Shape File 26 5.1 Objectives . 26 5.2 Boundary File Input Format . 26 5.3 Creating a Polygon Shape File for the Base Map . 28 5.4 Joining a Data Table to the Base Map . 29 5.5 Creating a Regular Grid Polygon Shape File . 31 5.6 Practice . 34 6 Spatial Data Manipulation 36 6.1 Objectives . 36 6.2 Creating a Point Shape File Containing Centroid Coordinates 37 6.2.1 Adding Centroid Coordinates to the Data Table .
    [Show full text]
  • HW: Scatter Plots
    HW: Scatter Plots Name: Date: 1. The scatter plot below shows the average traffic 2. Ms. Ochoa recorded the age and shoe size of each volume and average vehicle speed on a certain student in her physical education class. The graph freeway for 50 days in 1999. below shows her data. Which of the following statements about the graph Which statement best describes the relationship is true? between average traffic volume and average vehicle speed shown on the scatter plot? A. The graph shows a positive trend. A. As traffic volume increases, vehicle speed B. The graph shows a negative trend. increases. C. The graph shows a constant trend. B. As traffic volume increases, vehicle speed decreases. D. The graph shows no trend. C. As traffic volume increases, vehicle speed increases at first, then decreases. D. As traffic volume increases, vehicle speed decreases at first, then increases. page 1 3. Which graph best shows a positive correlation 4. Use the scatter plot below to answer the following between the number of hours studied and the test question. scores? A. B. The police department tracked the number of ticket writers and number of tickets issued for the past 8 weeks. The scatter plot shows the results. Based on the scatter plot, which statement is true? A. More ticket writers results in fewer tickets issued. B. There were 50 tickets issued every week. C. When there are 10 ticket writers, there will be 800 tickets issued. C. D. More ticket writers results in more tickets issued. D. page 2 HW: Scatter Plots 5.
    [Show full text]