Flower Extracts and Their Essential Oils As Potential Antimicrobial Agents for Food Uses and Pharmaceutical Applications Han Ching Voon, Rajeev Bhat, and Gulam Rusul

Total Page:16

File Type:pdf, Size:1020Kb

Flower Extracts and Their Essential Oils As Potential Antimicrobial Agents for Food Uses and Pharmaceutical Applications Han Ching Voon, Rajeev Bhat, and Gulam Rusul Flower Extracts and Their Essential Oils as Potential Antimicrobial Agents for Food Uses and Pharmaceutical Applications Han Ching Voon, Rajeev Bhat, and Gulam Rusul Abstract: Plants with potential therapeutic value have been used from time immemorial to cure various ailments and infectious diseases. Secondary metabolites or the bioactive compounds (phytochemicals) present in plants have been reported to be accountable for various observed biological activities. Consumer awareness of the possible side effects of using chemical-based antimicrobial agents has forced researchers to identify and explore natural plant-based antimicrobial agents (or preservatives) that are toxicologically safe, especially when used in food applications. Of late, scientific evidence has been provided on the potential antimicrobial activities exhibited by certain traditionally used flower extracts or their essential oils (edible and wild). This review focuses on providing and updating available information on the antimicrobial activities exhibited by flowers, which are envisaged to find potential applications as natural preservatives for foods or applications in the pharmaceutical industries to develop new and economical herbal-based products for treating various diseases. Introduction procedures has been attributed mainly to the presence of active Infectious diseases and foodborne illnesses can cause severe phytochemicals or bioactive compounds in plants (Quarenghi and health effects and can even lead to death among the residing others 2000; Ye and others 2004; Zhang and Zhang 2007; Dung population, especially in the developing regions of the world. and others 2008; Zhao and others 2009). The continual emergence of antibiotic-resistant microorganisms Given the scope of searching new antimicrobial agents, antimi- has prompted researchers’ world over to search for new antimicro- crobials derived from plant materials are often regarded as natural bial agents that are more effective against the resistant microbial and safe compared to industrial chemicals. Of late, plant-based pathogens (Nascimento and others 2000; Thaller and others 2010). medicine has become more popular due to the increasing concern Structural modification of the antimicrobials (against which mi- of consumers with regard to the use of synthetic chemical prepa- crobial resistance has been developed) is reported to improve the rations and use of artificial antimicrobial preservatives, especially effectiveness of antimicrobial agents against bacteria, fungi, and in modern food protection practices (Marino and others 2001; viruses (De Clercq 2001; Poole 2001; Jeu and others 2003; Zhang Hamedo and Abdelmigid 2009). and others 2010). However, of late, research efforts have been Some of the hoped-for advantages of using natural antimicro- put forth to improve the effectiveness of antimicrobial drugs by bials include: reducing total dependence on antibiotics, reducing developing novel and a new class of antimicrobial drugs that can development of antibiotic resistance by pathogenic microorgan- effectively work on multitargeted sites or organisms (Esterhuizen isms, controlling cross-contaminations by foodborne pathogens, and others 2006; Alka and others 2010). improvizing food preservation technology, and strengthening im- Traditionally, plants with potential therapeutic or medicinal val- mune system in humans (Abou-taleb and Kawai 2008; Fisher ues have been successfully utilized for preventing and treating var- and Phillips 2008; Tajkarimi and others 2010). Today, growing ious ailments and foodborne illnesses. Since time immemorial, market trends indicate a rapid increase in the number of natu- various plants and their products have been used in traditional ral plant-derived products (such as green tea, herbal decoctions, medicine to cure some of the common disorders and degenerative or herbal medicines) that may include aerial parts, seeds, fruits, diseases in humans as well as in animals (such as Ayurvedic and tra- roots, rhizomes, and flowers. Among these, flowers have attained ditional Chinese medicinal practices). The effectiveness of these high priority and found various applications. Floral extracts and their isolated essential oils are traditionally believed to be rich in phytochemicals exhibiting rich bioactivity. These compounds are MS 20110898 Submitted 7/26/2011, Accepted 9/26/2011. Authors are of interest to the local industry as well as to the general pop- with Food Technology Div., School of Industrial Technology, Univ. Sains Malaysia, Penang 11800, Malaysia. Direct inquiries to author Bhat (E-mail: ulation and are actively being explored for various commercial [email protected] and [email protected]). applications (such as tea, bakery products, and more). Floral ex- tracts and essential oils are also considered to be potential natural c 2011 Institute of Food Technologists r 34 ComprehensiveReviewsinFoodScienceandFoodSafety Vol.11,2012 doi: 10.1111/j.1541-4337.2011.00169.x Flowers as potential antimicrobial agents . antimicrobial agents. Available reports indicate their efficacy and at reduced pressure (temperature preferably ≤ 40 ◦C) in a rotary to possess a broad spectrum of antimicrobial activity against vari- evaporator to prevent degradation of heat-sensitive compounds. ous spoilage and pathogenic microorganisms, which is attributed Solvent extractions are classified into 2 methods: continuous to their bioactive constituents (Quarenghi and others 2000; and noncontinuous. In continuous extraction method (such as Ye and others 2004; Zhang and Zhang 2007; Dung and others percolation, soxhlet extraction), solvent flow through the sample 2008; Zhao and others 2009). Based on these facts, the present re- continuously and the saturated solvent is constantly replaced with view focuses mainly on providing baseline information on explor- a less saturated solvent. In noncontinuous method (such as mac- ing some of the common and wild (edible and nonedible) flowers eration, infusion, decoction), the extraction is stopped when a possessing potential antimicrobial activities. The details on these suitable equilibrium is reached between the solute concentration aspects are hopefully expected to be useful for the commercial ex- (inside the flowers and the solvent), unless the solvent needs to be ploitation of flowers to develop natural preservative preparations replaced with a new batch of solvent (Jones and Kinghorn 2005). with applicability in the food and pharmaceutical industries. Percolation. This is an efficient method wherein a percolator is used for extraction. Percolator is comprised of a wide opening Extraction Method (at the top) to accommodate addition or removal of a sample Solvent extraction along with a valve at the bottom, designed to allow outflow of Solvent extraction is one of the most widely employed methods the solvent. With the valve held at a closed position, samples in for preparation of flower extracts. Solvent extraction (solid-liquid powdered form are added and packed into the percolator leaving extraction) involves the process of leaching (simple physical so- sufficient space to allow expansion. Then the samples are covered lution or dissolution process). Leaching is a separation technique by addition of a suitable solvent, and are allowed to soak for few that involves removal of soluble solids from a solid mixture by hours or overnight. Further, the solvent is allowed to flow out at employing a suitable solvent or solvent mixture. Various factors a controlled flow rate from the bottom of the percolator through influence the solvent extraction procedure, which includes: the the valve. Fresh solvent is added at the top to replace the saturated rate of transport of solvent into the material, rate of solubilization solvent “flow-out” from the percolator (Jones and Kinghorn 2005; of soluble constituents in the solvent, and the rate of transport Singh 2008). of solution (extract) out of the insoluble matter. Solvent polarity, Soxhlet extraction. Soxhlet extraction is a common conven- vapor pressure, and viscosity are also of importance for effective tional method used for extracting heat-stable compounds. The extraction. In case of plant materials, adequate time is required for Soxhlet extractor consists of a distillation flask, an extractor, and diffusion of solvent via plant cell walls for dissolution of soluble a condenser. The solvent in the distillation flask is heated and the constituents and for diffusion of the solution (extract) out to the resulting vapor is condensed in the condenser. The condensed sol- surface of the cell wall (Houghton and Raman 1998; Singh 2008; vent from the condenser fills into the thimble-holder containing Wijekoon and others 2011). the sample that needs to be extracted. When the solution in the Flower extracts can be prepared either from fresh or dried sam- extractor reaches the overflow level, a siphon aspirates the solution ples. Prior to extraction, flower samples are subjected to air-drying of the thimble-holder and unloads it back into the distillation flask, or freeze-drying, followed by grinding, milling, or homogeniza- carrying dissolved solute into the bulk liquid. The solute is left in tion to reduce sample particle size. These procedures are followed the distillation flask while the solvent is evaporated, condensed, in order to enhance the efficiency of extraction process and yield of and passed back into the sample solid bed. This process is repeated the resulting extract. Various solvents, such as methanol, ethanol, 3 to 5 times or until
Recommended publications
  • A Synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1977 A synopsis of Phaseoleae (Leguminosae, Papilionoideae) James Andrew Lackey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Lackey, James Andrew, "A synopsis of Phaseoleae (Leguminosae, Papilionoideae) " (1977). Retrospective Theses and Dissertations. 5832. https://lib.dr.iastate.edu/rtd/5832 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • A Prespective Study of Clitoria Ternatia and Its Pharmacological Importance
    High Technology Letters ISSN NO : 1006-6748 A PRESPECTIVE STUDY OF CLITORIA TERNATIA AND ITS PHARMACOLOGICAL IMPORTANCE S. GEJALAKSHMI *1, N. HARIKRISHNAN FACULTY OF PHARMACY, DR.M.G.R. EDUCATIONAL AND RESEARCH INSTITUTE, VELAPPANCHAVADI, CHENNAI-77 Abstract: Medicinal herbs and aromatic plants have been extensively used for the past few decades due to its potency and minimal side effects. By observing the medicinal importance of the climbing herb Clitoria ternatea (CT)of Fabeacea family and commonly known as Butterfly pea and Shankpushpi has been taken up due to its high medicinal value due to its wide range of use over decade as memory enhancer,antidepressant,anticonvulsant,transquilizers and sedative agent.A series of secondary metabolite including triterpenoids,flavone glycosides,anthocyanins and i steroids has been isolated from CT extracts.CT plant has wide range of pharmacological activity such as antimicrobial,antipyretic,diuretic,local anaesthetic.CT has been used for several diseases due to availability of several active constituents like alkaloids,flavanoids,saponins,tannins,carbohydrates .This review is an platform to explore the phytochemical investigation and pharmacological importance of CT,which have been practiced in traditional system of medicine and its future potential prespectives in view of innumerable therapeutic importance on this well-known twinning climber. Key words: Shankpushpi,phytochemical,antibacterial,anti- fungal, anti-cancer Introduction: Herbal drugs has an impact for curing disorders. The medicinal herbs are rich in various phytochemical constituents which has been found for traditional system of medicines. In the present reveiw focused on the traditional importance of clitoria ternatea. (CT).It is perennial twinning herb. It is a member of fabiaecea family and it has various synonym like blue pea.
    [Show full text]
  • Cultivar and Ecotype Recommendations for Partridge Pea
    SC NRCS November 2015 Cultivar and Ecotype recommendations for Partridge Pea and Switchgrass (Guidance for CRP, CP-36) Problematic cultivar of Chamaecrista fasciculata (Large-Flower Partridge Pea)- "Lark" (AR) – not recommended This cultivar grows thick and tall, can cause longleaf pine seedling mortality and dominate wildlife habitat planting areas reducing diversity Comanche (TX) and Riley (KS) are other cultivars available commercially but because they originated outside of the southeast and are adapted for portions of Missouri, Arkansas, Tennessee, Mississippi, Louisiana, Oklahoma, and Texas; they are not recommended. Recommended/preferred alternatives: Large-Flower Partridge Pea (Chamaecrista fasciculata) - Florida ecotype or other Southeastern Regional ecotypes are available commercially - Seed vendors should provide seed ecotype information. Use light rate at 0.5 lb./acre or less. Use the closest ecotype available. If using large-flower partridge pea, do not seed until longleaf are several feet tall. Small-Flower Partridge Pea (Chamaecrista nictitans)- this species is smaller in stature and will not dominate or over-top longleaf seedlings. Slender Bushclover (Lespedeza virginica), Roundhead Lespedeza (Lespedeza capitata), Hairy Lespedeza (Lespedeza hirta); use 0.4 lbs. per acre or less Tick-trefoil/Beggar's Lice species: Desmodium canadense, D. floridanum, D. paniculatum, D. perplexum Wild Blue Lupine (Lupinus perennis), Goat's Rue (Tephrosia virginiana), or Butterfly Pea or Spurred Butterfly Pea (Clitoria mariana or Centrosema virginianum) Baptisia/Wild Indigo (Baptisia albescens, B. alba, B. australis, B. perfoliata, B. tinctoria) Sensitive Briar (Mimosa quadrivalvis or Mimosa microphylla) ← ↑ seeding rate for these: 0.1 to 0.5 lbs. per acre Problematic cultivars of Panicum virgatum (Switchgrass) – “Alamo” (TX), “Kanlow” (OK) – Not recommended - varieties were developed for forage and burn at the same BTU as a low grade coal).
    [Show full text]
  • Studies of the Medicinal Plant Euphorbia Hirta Methanol Leaf Extract Phytocomponents by GCMS Analysis
    International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume 1 Issue 4 ǁ July 2016. Studies of the medicinal plant Euphorbia hirta methanol leaf extract phytocomponents by GCMS analysis. 1 1 1 2 3 Igwe K. K. , Madubuike A.J. , Akomas S.C. , Otuokere I. E. Ukwueze C. S. 1Departmemt of Veterinary Physiology, Pharmacology and Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria. 2Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria. 3Departmemt of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria. Corresponding Author: [email protected] ABSTRACT: Phytocomponents in methanolic extract of Euphorbia hirta, leaf was studied using GC MS analysis. Ten compounds were identified from the extract. The major chemical constituents were Niacin or Nicotinic acid [Peak area: 31.70% ; RT: 22.718;Mol formula:C6H5NO2],S-methyl-L-cysteine [Peak area: 18.88%; RT: 21.794; Mol formula:C4H9NO2S], Methyl 1,4-methylpentadecanoate [Peak area :11.22% ; RT: 19.326; Mol formula:C17H34O2], 2-amino-3-sulfanylpropanoic acid [Peak area: 5.16%; RT: 21.682; Mol formula:C3H7NO2S], 4-amino-4-oxobut-2-enoic acid [Peak area: 4.02%; RT: 23.118; Mol formula:C4H5NO3]. The bioactive compounds in the methanol leaf extract of Euphorbia hirta, exhibited phytopharmacological significance and hence could be beneficial for therapeutic use against some health challenges. Keywords: GCMS, Euphorbia hirta, Asthma plant, Hallucination; Nicotinic acid. I. INTRODUCTION Euphorbia hirta is an annual hairy plant with many stems and branches from the base to top that is reddish or purplish in colour [1]. It belongs to the plant family Euphorbiaceae.
    [Show full text]
  • Effects of Diets Containing Dry Extracts of Achillea Millefolium, Mentha
    Iranian Journal of Aquatic Animal Health 5(1) 1-16 2019 Effects of diets containing dry extracts of Achillea millefolium, Mentha piperita and Echinacea purpurea on growth, hematological and immunological indices in juvenile common carp (Cyprinus carpio) S Alinezhad* Institute of Agricultural Education and Extension, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran Received: March 2019 Accepted: April 2019 Abstract In this study, the effects of three herbal dry Mean corpuscular volume (MCV) and mean extracts (Achillea millefolium, Mentha corpuscular hemoglobin (MCH) in all groups piperita and Echinacea purpurea) were except 0.1% M. piperita group and 0.5% E. investigated on growth, hematological and purpurea were increased compare with control immunological indices in juvenile common group (P≤0.05). MCHC in 0.5% E. purpurea carp (Cyprinus carpio). 400 juvenile fish with and 0.1 and 1% M. piperita groups showed the initial weight of 14.30 ± 0.77g were studied in highest values. Levels of 0.5% M. piperita and 10 treatment groups (9 treatment groups & a 1% E. purpurea and A. millefolium make control) with four replicates for 60 days. Three significantly increases in total leukocytes and levels (0.1, 0.5 and 1%) of dry extracts of each neutrophils (P≤0.05). Significantly increases of herb were prepared according to standard lymphocytes and decrease of monocytes were method and added to the commercial common observed in levels of 0.5% E. purpurea and 1% carp feed. At the end of period twelve fish level of all herbs groups (P≤0.05). Increased collected out of each group and the parameters levels of immunoglobulin compared to control were measured.
    [Show full text]
  • Genotoxicity of Euphorbia Hirta on Allium Cepa Assay
    2012 International Conference on Nutrition and Food Sciences IPCBEE vol. 39 (2012) © (2012) IACSIT Press, Singapore Genotoxicity of Euphorbia Hirta on Allium Cepa Assay Kwan Yuet Ping1, Ibrahim Darah2, Umi Kalsom Yusuf3, Sreenivasan Sasidharan1+ 1Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia 2School of Biological Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia 3Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Abstract. The genotoxic effects of crude extract of Euphorbia hirta on was investigated using Allium cepa assay. Different concentrations of extract were tested on root meristems of A. cepa. Ethylmethanesulfonate was used as positive control and distilled water as negative control. The result showed that mitotic index decreased as the concentrations of crude extracts increased. The increase of the genotoxic effect corresponds to a decrease of mitotic activity. A dose-dependent increase of chromosome aberrations was observed. Abnormalities scored were stickiness, c-mitosis, bridges and vagrant chromosomes. Result of this study suggested that the methanol crude extracts of E. hirta exerted significant genotoxic and mitodepressive effects at 1000µg/ml. Keywords: Genotoxicity; Allium cepa; Mitotic index; Chromosome aberrations 1. Introduction The use of medicinal plants in remedial pursuits is gaining attention worldwide. Despite the profound therapeutic advantages possessed by the medicinal plants, some constituents of medicinal plants have been found to be potentially toxic, mutagenic, carcinogenic and teratogenic. However, the potential toxicity of herbs has not been recognized by the general public or by professional groups of traditional medicine [1]. Hence, evaluating the toxicological effects of any herbal extract intended to be used in humans is of utmost importance.
    [Show full text]
  • Analysis of Essential Oil from Leaves and Bulbs of Allium Atroviolaceum
    Brief Communication and Method report 2020;3(1):e8 Analysis of essential oil from leaves and Bulbs of Allium atroviolaceum a a b c* Parniyan Sebtosheikh , Mahnaz Qomi , Shima Ghadami , Faraz Mojab a. Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. b. Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. c. School of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: Abstract: Received: September 2020 Introduction: Medicinal plants used in traditional medicine as prevention and treatment Accepted: September 2020 of disease and illness or use in foods, has a long history. Plants belonging to genera Published online: Allium have widely been acquired as food and medicine. In many countries, including September 2020 Iran, a variety of species of the genus Allium such as garlic, onions, leeks, shallots, etc use for food and medicinal uses. Methods and Results: The leaves and bulbs of Allium atroviolaceum, collected from * Corresponding Author: Borujerd (Lorestan Province, Iran) in May 2015 and their essential oils of were obtained Faraz Mojab Email: [email protected] by hydro-distillation. The oils were analyzed by gas chromatography coupled with mass spectrometry (GC/MS) and their chemical composition was identified. The major constituents of A. atroviolaceum leaves oil were dimethyl trisulfide (59.0%), ethyl linolenate (12.4%), phytol (11.4%) and in bulb oil were methyl methyl thiomethyl disulfide (61.3%), dimethyl trisulfide (15.1%) and methyl allyl disulfide (4.3%). The major constituents of both essential oils are sulfur compounds. Conclusion: The results of the present study can help to increase of our information about composition of an edible herb in Iran.
    [Show full text]
  • Antioxidant Activity and Phytochemical Screening of the Methanol Extracts of Euphorbia Hirta L
    Asian Pacific Journal of Tropical Medicine (2011)386-390 386 Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage:www.elsevier.com/locate/apjtm Document heading doi: Antioxidant activity and phytochemical screening of the methanol extracts of Euphorbia hirta L Abu Arra Basma1, Zuraini Zakaria1, Lacimanan Yoga Latha2, Sreenivasan Sasidharan2* 1Biology Division, School of Distance Education, Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia 2Institutes for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM 11800, Pulau Pinang, Malaysia ARTICLE INFO ABSTRACT Article history: Objective: Euphorbia hirta (E. hirta) To assess antioxidant activities of different parts of , and to Received 25 February 2011 Methods: search for new sources of safe and inexpensive antioxidants. Samples of leaves, stems, Received in revised form 27 March 2011 E. hirta flowers and roots from were tested for total phenolic content, and flavonoids content and Accepted 2 April 2011 in vitro Available online 20 May 2011 antioxidant activity by diphenyl-1-picrylhydrazylResults: (DPPH) assay and reducing power was measured using cyanoferrate method. The leaves extract exhibited a maximum DPPH Keywords: scavenging activity of (72.96依0.78)% followed by the flowers, roots and stems whose scavenging activities were (52.45依0.66)%, (48.59依0.97)%, and (44.42依0.94)%, respectively. The standard Antioxidant butylated hydroxytoluene (BHT) was (75.13依0.75)%. The IC50 for leaves, flowers, roots, stems Euphorbia hirta L and BHT were 0.803, 0.972, 0.989, 1.358 and 0.794 mg/mL, respectively. The reducing power of DPPH scavenging the leaves extract was comparable with that of ascorbic acid and found to be dose dependent.
    [Show full text]
  • Weed Management and Dynamics of Weed Seedbank in Rabi Fennel ( Foeniculum Vulgare ) B.S
    Weed Management and Dynamics of Weed Seedbank in rabi fennel ( Foeniculum vulgare ) B.S. Gohil 1, R.K. Mathukia 2 and P.R. Mathukia 3 1,2,3 Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh-362001 (Gujarat, India) ABSTRACT A field experiment was conducted during rabi season of 2011-12 at Junagadh to find out most effective and economical method of weed control in rabi fennel (Foeniculum vulgare Mill.). The dominant weed species observed were Cyperus rotundus L., Chenopodium album L., Digera arvensis Forsk and Asphodelus tenuifolius L. Cav. Results revealed that besides weed free treatment, significantly higher plant height, number of branches/plant, number of umbels/plant, number of seeds/umbellate, test weight, seed weight per plant, and seed and stover yields of fennel were recorded with pre-emergence (PRE) application of pendimethalin @ 0.90 kg/ha + post-emergence (POE) application of fenoxaprop @ 75 g/ha at 45 DAS, which was at par with pendimethalin @ 0.90 kg/ha PRE + hand weeding (HW) at 45 DAS and HW twice at 15 and 45 DAS. These treatments also recorded lower weed density and dry weight of weeds along with higher net returns and B: C ratio owing to lower weed index and higher weed control efficiency. The highest depletion of weed seedbank was observed with pendimethalin @ 0.90 kg/ha PRE + HW at 45 DAS. Keywords: Pendimethalin, Fenoxaprop, Quizalofop, oxadiargyl, glyphosate, propaquizafop. 1. INTRODUCTION India occupies prime position in seed spices and plays very important role in earning foreign exchange through export of seed spices. India is the world’s largest producer, consumer and exporter of the spices.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, HABITAT RELEASE 75SG
    01/ ~'tI91 /8 BPA Reg_ u. s. Er.fV'IRONMENTAL PROTf>CTION AGBNCY Date of: 13Bua!lCC: Office of Pesticide Programs Number: Regiotration Division (7505C) JUL 29 ~ 401 RM· St., S.W. 241-402 mq Washington, D.C. 20460 Term of Issuance: NOTICE OF PESTICIDE: Conditional _x__ Registration Reregistration Name of Pesticide Product: (under FIFRA, as amended) Habitat Release 75SG herbicide Name and Address of Registrant (include ZIP Code) : American Cyanamid Company P.O. Box 400 Princeton, NJ 08543-0400 Not_: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Registration Division prior to use of the label in commerce. In any correspondence on this product always refer to the above BpA registration number. On the basis ot information furnished by the registrant. the above named pesticide is hereby registered/reregistered ~der the Federal Ins~cticide, Fungicide and Rodenticide Act. Registration is in no way to be construed as ~ endorsement or recommendation of this product by the Agency.~ In order to protect health and the environment, the Administrator, on his motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under this Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is conditionally registered in accordance with FIFRA sec. 3(c) (7) (A) provided that you: 1.
    [Show full text]
  • CBD First National Report
    FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10
    [Show full text]