Identification and Characterisation of Human Cytomegalovirus-Mediated Degradation of Helicase-Like Transcription Factor

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterisation of Human Cytomegalovirus-Mediated Degradation of Helicase-Like Transcription Factor Identification and Characterisation of Human Cytomegalovirus-Mediated Degradation of Helicase-Like Transcription Factor Kai-Min Lin Department of Medicine Cambridge Institute for Medical Research University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Fitzwilliam College September 2020 Declaration I hereby declare, that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree of qualification in this, or any other university. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as where specified in the text and acknowledgments. This dissertation does not exceed the specified word limit of 60,000 words as defined by the Degree Committee, excluding figures, photographs, tables, appendices and bibliography. Kai-Min Lin September, 2020 I Summary Identification and characterisation of human cytomegalovirus-mediated degradation of helicase-like transcription factor Kai-Min Lin Viruses are known to degrade host factors that are important in innate antiviral immunity in order to infect successfully. To systematically identify host proteins targeted for early degradation by human cytomegalovirus (HCMV), the lab developed orthogonal screens using high resolution multiplexed mass spectrometry. Taking advantage of broad and selective proteasome and lysosome inhibitors, proteasomal degradation was found to be heavily exploited by HCMV. Several known antiviral restriction factors, including components of cellular promyelocytic leukemia (PML) were enriched in a shortlist of proteasomally degraded proteins during infection. A particularly robust novel ‘hit’ was helicase-like transcription factor (HLTF), a DNA repair protein that participates in error-free repair of stalled replication forks. HLTF was found degraded very early during infection, and its expression remained low throughout the course of HCMV lytic cycle. De novo expression of UL145, a previously uncharacterized viral protein, was found necessary and sufficient to degrade HLTF via recruitment of the cullin 4/DDB1 E3 ligase complex. HLTF degradation was reported in human immunodeficiency virus (HIV) infection, however the interaction between HLTF and viruses remain largely elusive. The roles of UL145 were explored in hopes of understanding functions of HLTF in HCMV infection. UL145 was identified as a non-essential immediate early protein, however had a possible role in type I interferon (IFN) induction regulation in later stages of HCMV lytic progression. As the key host protein to be rescued by UL145 deletion, depletion of HLTF was found to transiently impair IFNβ transcription and HCMV infection. I hypothesise that HLTF is an undiscovered nuclear viral DNA sensor that triggers an antiviral interferon response during viral DNA replication. Additionally, work presented here expands the range of powerful screening technologies to identify HCMV restriction factor candidates by identifying virally degraded host proteins. Further investigation of these candidates will contribute to our II understanding of how HCMV modulates host protein expression to evade antiviral factors. III Acknowledgments Firstly, I would like to express my sincere gratitude to my supervisor Dr. Mike Weekes, for his everlasting support, guidance, and encouragement throughout the pursuit of this degree. I was blessed with this opportunity for he patiently reviewed a PhD application coming abruptly. His instruction was fundamental to this thesis and helped me develop as a research scientist. Without his scientific acumen and aweing diligence, it was nearly impossible to move this challenging project forward. I would also like to thank everyone in the Weekes lab, who created the most enjoyable working environment in the world that I was almost reluctant to leave. Many of them contributed a lot to this project, especially Dr. Katie Nightingale, who laid a firm foundation for the entire protein degradation project and generously provided helpful discussions. I really appreciate Dr. Luis Nobre, Alice Fletcher-Etherington, and Dr. Ben Ravenhill for providing me the many cell lines and plasmids I needed for my experiments, and Dr. Lior Soday for the help on processing the proteomics data. All members of the Weekes lab were truly the highlights of my PhD. I will deeply miss the wise decisions from Katie, reliable solutions from Luis, warm support from Lior, friendly chats with Colin, evening enlightenments from Ben, prodigious work from Alice, wee comedies from Leah, insider gossips from Cassie, and of course, having Martin to check on my wellbeing. Our collaborators at Cardiff University, particularly Dr. Rich Stanton, had unfailingly supplied us with all kinds of HCMV strains. His expertise in HCMV provided reliable protocols and useful advice that helped overcome many hurdles. My research involved many equipment from CIMR core facility. I would like to thank Dr. Robin Antrobus from the proteomics core, Dr. Reiner Schulte from the flow cytometry core, Mark Bowen from the Microscopy core, and Mark Smallwood the level coordinator for maintaining the state of the art facilities and the help making the experimental plans into reality. I am very fortunate to receive this opportunity to study at the University of Cambridge as an oversea fee status student. I would like to thank the Cambridge Commonwealth, European & International Trust and the Ministry of Education of Taiwan for setting up IV and running the Taiwan-Cambridge scholarship programme, which funded my tuition, fee, and stipend in Cambridge. Finally, I will not be able to complete this without the unconditional support I have received from my friends and family, no matter from Cambridge, the EBV group of National Taiwan University, National Tsing-Hua University, or anywhere else I have ever called home. I would like to thank Julia Woitischek and Ragini Medhi for accompanying me on this PhD journey. I am also very grateful to Chin-Wen Liang and Chung-Ying Huang for bearing with me during all the ups and downs tirelessly in the past decade. V VI Table of Contents Declaration……….…………………………………………….………………………………..……………………………….I Summary………………………………………..……………………………….………………………………………II Acknowledgement…………………………………………………………….……….…………………….….…IV Table of Contents……………………………………………………………….……………………………….…VII List of Figures……………………………………………………………………….……………………………..…XII List of Tables………………………………………………………………………………………………..……….XVI Abbreviation....................................................................................................…..XVIII Chapter 1. Introduction ......................................................................................... 1 1.1. Human Cytomegalovirus .................................................................................... 1 1.1.1. Herpesvirdae family .................................................................................... 1 1.1.2. Human Cytomegalovirus ............................................................................ 2 1.1.3. Virion structure ........................................................................................... 3 1.1.4. Viral genome ............................................................................................... 4 1.1.5. Laboratory strains ....................................................................................... 5 1.1.6. Latency ........................................................................................................ 6 1.1.7. Lytic replication cycle ................................................................................. 7 1.1.8. HCMV-associated diseases ....................................................................... 11 1.1.9. Intervention .............................................................................................. 11 1.2. Viral DNA Sensors for Herpesviruses and Viral Counteractions ...................... 12 1.2.1. Interferon.................................................................................................. 12 1.2.2. Type I interferon production and signalling ............................................. 14 1.3. Protein degradation in the cell ........................................................................ 21 1.3.1. Ubiquitin-proteasome pathway ............................................................... 21 1.3.2. Viral interference of proteasome-mediated degradation ....................... 26 1.3.3. Lysosomal proteolysis ............................................................................... 27 1.3.4. Viral subversion of lysosomal degradation .............................................. 31 1.4. DNA repair........................................................................................................ 34 1.4.1. DNA repair and herpesviruses .................................................................. 35 1.4.2. Helicase-like transcription factor (HLTF) .................................................. 37 VII 1.5. Multiplexed proteomic analysis screening of host protein degradation during early HCMV infection .................................................................................................. 39 1.5.1. Protein with E3 ligase domain was targeted for degradation during HCMV infection .................................................................................................................
Recommended publications
  • Chikungunya Fever: Epidemiology, Clinical Syndrome, Pathogenesis
    Antiviral Research 99 (2013) 345–370 Contents lists available at SciVerse ScienceDirect Antiviral Research journal homepage: www.elsevier.com/locate/antiviral Review Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy ⇑ Simon-Djamel Thiberville a,b, , Nanikaly Moyen a,b, Laurence Dupuis-Maguiraga c,d, Antoine Nougairede a,b, Ernest A. Gould a,b, Pierre Roques c,d, Xavier de Lamballerie a,b a UMR_D 190 ‘‘Emergence des Pathologies Virales’’ (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France b University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France c CEA, Division of Immuno-Virologie, Institute of Emerging Diseases and Innovative Therapies, Fontenay-aux-Roses, France d UMR E1, University Paris Sud 11, Orsay, France article info abstract Article history: Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a Received 7 April 2013 debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some Revised 21 May 2013 mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Accepted 18 June 2013 Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than Available online 28 June 2013 1500 scientific publications on the different aspects of the disease and its causative agent have been pro- duced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, Keywords: and in the absence of autochthonous cases in developed countries, the interest of the scientific commu- Chikungunya virus nity remained low.
    [Show full text]
  • Antibody-Mediated Enhancement Aggravates Chikungunya Virus
    www.nature.com/scientificreports OPEN Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity Received: 14 July 2017 Fok-Moon Lum 1,2, Thérèse Couderc3,4, Bing-Shao Chia1,8, Ruo-Yan Ong1,9, Zhisheng Her1,10, Accepted: 17 January 2018 Angela Chow5, Yee-Sin Leo5, Yiu-Wing Kam1, Laurent Rénia1, Marc Lecuit 3,4,6 & Published: xx xx xxxx Lisa F. P. Ng1,2,7 The arthropod-transmitted chikungunya virus (CHIKV) causes a fu-like disease that is characterized by incapacitating arthralgia. The re-emergence of CHIKV and the continual risk of new epidemics have reignited research in CHIKV pathogenesis. Virus-specifc antibodies have been shown to control virus clearance, but antibodies present at sub-neutralizing concentrations can also augment virus infection that exacerbates disease severity. To explore this occurrence, CHIKV infection was investigated in the presence of CHIKV-specifc antibodies in both primary human cells and a murine macrophage cell line, RAW264.7. Enhanced attachment of CHIKV to the primary human monocytes and B cells was observed while increased viral replication was detected in RAW264.7 cells. Blocking of specifc Fc receptors (FcγRs) led to the abrogation of these observations. Furthermore, experimental infection in adult mice showed that animals had higher viral RNA loads and endured more severe joint infammation in the presence of sub-neutralizing concentrations of CHIKV-specifc antibodies. In addition, CHIKV infection in 11 days old mice under enhancing condition resulted in higher muscles viral RNA load detected and death. These observations provide the frst evidence of antibody-mediated enhancement in CHIKV infection and pathogenesis and could also be relevant for other important arboviruses such as Zika virus.
    [Show full text]
  • NSP4)-Induced Intrinsic Apoptosis
    viruses Article Viperin, an IFN-Stimulated Protein, Delays Rotavirus Release by Inhibiting Non-Structural Protein 4 (NSP4)-Induced Intrinsic Apoptosis Rakesh Sarkar †, Satabdi Nandi †, Mahadeb Lo, Animesh Gope and Mamta Chawla-Sarkar * Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India; [email protected] (R.S.); [email protected] (S.N.); [email protected] (M.L.); [email protected] (A.G.) * Correspondence: [email protected]; Tel.: +91-33-2353-7470; Fax: +91-33-2370-5066 † These authors contributed equally to this work. Abstract: Viral infections lead to expeditious activation of the host’s innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total Citation: Sarkar, R.; Nandi, S.; Lo, infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed M.; Gope, A.; Chawla-Sarkar, M. upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent Viperin, an IFN-Stimulated Protein, studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence Delays Rotavirus Release by Inhibiting of viperin, to mitochondria during infection.
    [Show full text]
  • UBE2N Antibody (N-Term) Blocking Peptide Synthetic Peptide Catalog # Bp13846a
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 UBE2N Antibody (N-term) Blocking peptide Synthetic peptide Catalog # BP13846a Specification UBE2N Antibody (N-term) Blocking UBE2N Antibody (N-term) Blocking peptide - peptide - Background Product Information The modification of proteins with ubiquitin is Primary Accession P61088 animportant cellular mechanism for targeting abnormal or short-livedproteins for degradation. Ubiquitination involves at least UBE2N Antibody (N-term) Blocking peptide - Additional Information threeclasses of enzymes: ubiquitin-activating enzymes, or E1s,ubiquitin-conjugating enzymes, or E2s, and ubiquitin-proteinligases, Gene ID 7334 or E3s. This gene encodes a member of the E2ubiquitin-conjugating enzyme family. Other Names Studies in mouse suggest thatthis protein plays Ubiquitin-conjugating enzyme E2 N, a role in DNA postreplication repair. Bendless-like ubiquitin-conjugating enzyme, [providedby RefSeq]. Ubc13, UbcH13, Ubiquitin carrier protein N, Ubiquitin-protein ligase N, UBE2N, BLU UBE2N Antibody (N-term) Blocking Target/Specificity peptide - References The synthetic peptide sequence used to generate the antibody AP13846a was Zhao, J., et al. BMC Med. Genet. 11, 96 (2010) selected from the N-term region of UBE2N. :Markson, G., et al. Genome Res. A 10 to 100 fold molar excess to antibody is 19(10):1905-1911(2009)Topisirovic, I., et al. recommended. Precise conditions should be Proc. Natl. Acad. Sci. U.S.A. optimized for a particular assay. 106(31):12676-12681(2009)Yin, Q., et al. Nat. Struct. Mol. Biol. 16(6):658-666(2009)van Wijk, Format S.J., et al. Mol. Syst. Biol. 5, 295 (2009) : Peptides are lyophilized in a solid powder format.
    [Show full text]
  • Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass
    cancers Review Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass Nicole A. Wilkinson y, Katherine S. Mnuskin y, Nicholas W. Ashton * and Roger Woodgate * Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA; [email protected] (N.A.W.); [email protected] (K.S.M.) * Correspondence: [email protected] (N.W.A.); [email protected] (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.) Co-first authors. y Received: 29 August 2020; Accepted: 29 September 2020; Published: 2 October 2020 Simple Summary: Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract: Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs).
    [Show full text]
  • Antivirals Against the Chikungunya Virus
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 June 2021 Review Antivirals against the Chikungunya Virus Verena Battisti 1, Ernst Urban 2 and Thierry Langer 3,* 1 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; [email protected] 2 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; [email protected] 3 University of Vienna, Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, A-1090 Vienna, Austria; * Correspondence: [email protected] Abstract: Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has re-emerged in recent decades, causing large-scale epidemics in many parts of the world. CHIKV infection leads to a febrile disease known as chikungunya fever (CHIKF), which is characterised by severe joint pain and myalgia. As many patients develop a painful chronic stage and neither antiviral drugs nor vac- cines are available, the development of a potent CHIKV inhibiting drug is crucial for CHIKF treat- ment. A comprehensive summary of current antiviral research and development of small-molecule inhibitor against CHIKV is presented in this review. We highlight different approaches used for the identification of such compounds and further discuss the identification and application of promis- ing viral and host targets. Keywords: Chikungunya virus ; alphavirus; antiviral therapy; direct-acting antivirals; host-directed antivirals; in silico screening; in vivo validation, antiviral drug development 1. Introduction Chikungunya virus (CHIKV) is a mosquito-borne alphavirus and belongs to the Togaviridae family. The virus was first isolated from a febrile patient in 1952/53 in the Makonde plateau (Tanzania) and has been named after the Makonde word for “that which bends you up”, describing the characteristic posture of patients suffering severe joint pains due to the CHIKV infection [1].
    [Show full text]
  • A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder
    G C A T T A C G G C A T genes Article A New Census of Protein Tandem Repeats and Their Relationship with Intrinsic Disorder Matteo Delucchi 1,2 , Elke Schaper 1,2,† , Oxana Sachenkova 3,‡, Arne Elofsson 3 and Maria Anisimova 1,2,* 1 ZHAW Life Sciences und Facility Management, Applied Computational Genomics, 8820 Wädenswil, Switzerland; [email protected] 2 Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland 3 Science of Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden * Correspondence: [email protected]; Tel.: +41-(0)58-934-5882 † Present address: Carbon Delta AG, 8002 Zürich, Switzerland. ‡ Present address: Vildly AB, 385 31 Kalmar, Sweden. Received: 9 March 2020; Accepted: 1 April 2020; Published: 9 April 2020 Abstract: Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small.
    [Show full text]
  • Lora Grainger Dissertation 6 23 10
    Characterization of the Transcripts that Encode pUL138, a Latency Determinant, During Human Cytomegalovirus Infection Item Type text; Electronic Dissertation Authors Grainger, Lora Ann Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 24/09/2021 15:04:11 Link to Item http://hdl.handle.net/10150/195915 1 CHARACTERIZATION OF THE TRANSCRIPTS THAT ENCODE PUL138, A LATENCY DETERMINANT, DURING HUMAN CYTOMEGALOVIRUS INFECTION by Lora A. Grainger Copyright © Lora A. Grainger 2010 A Dissertation Submitted to the Faculty of the DEPARTMENT OF IMMUNOBIOLOGY In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2010 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Lora A. Grainger entitled: Characterization of the Transcripts that Encode pUL138, a Latency Determinant, During Human Cytomegalovirus Infection. We recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _____________________________________________________Date: 6/15/10 Dr. Nafees Ahmad _____________________________________________________ Date: 6/15/10 Dr. Lonnie Lybarger _____________________________________________________ Date: 6/15/10 Dr. Carol Dieckmann Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement _____________________________________________________Date: 6/15/10 Dissertation Director: Dr.
    [Show full text]
  • Intrinsic Disorder in Tetratricopeptide Repeat Proteins
    International Journal of Molecular Sciences Article Intrinsic Disorder in Tetratricopeptide Repeat Proteins 1, 1, 1, 2 Nathan W. Van Bibber y, Cornelia Haerle y, Roy Khalife y, Bin Xue and Vladimir N. Uversky 1,3,4,* 1 Department of Molecular Medicine Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; [email protected] (N.W.V.B.); [email protected] (C.H.); [email protected] (R.K.) 2 Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA; [email protected] 3 USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA 4 Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 4 Institutskaya St., Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected]; Tel.: +1-813-974-5816; Fax: +1-813-974-7357 These authors contributed equally to this work. y Received: 21 April 2020; Accepted: 22 May 2020; Published: 25 May 2020 Abstract: Among the realm of repeat containing proteins that commonly serve as “scaffolds” promoting protein-protein interactions, there is a family of proteins containing between 2 and 20 tetratricopeptide repeats (TPRs), which are functional motifs consisting of 34 amino acids. The most distinguishing feature of TPR domains is their ability to stack continuously one upon the other, with these stacked repeats being able to affect interaction with binding partners either sequentially or in combination.
    [Show full text]
  • Repeatsdb in 2021: Improved Data And
    RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures Lisanna Paladin, Martina Bevilacqua, Sara Errigo, Damiano Piovesan, Ivan Mičetić, Marco Necci, Alexander Miguel Monzon, Maria Laura Fabre, Jose luis Lopez, Juliet Nilsson, et al. To cite this version: Lisanna Paladin, Martina Bevilacqua, Sara Errigo, Damiano Piovesan, Ivan Mičetić, et al.. RepeatsDB in 2021: improved data and extended classification for protein tandem repeat structures. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkaa1097. hal-03089312 HAL Id: hal-03089312 https://hal.archives-ouvertes.fr/hal-03089312 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 11 Nucleic Acids Research 1 2 RepeatsDB in 2021: improved data and 3 4 5 extended classification for protein tandem 6 7 repeat structures 8 9 10 Lisanna Paladin1, Martina Bevilacqua1, Sara Errigo1, Damiano Piovesan1, Ivan Mičetić1, Marco Necci1, 11 Alexander Miguel Monzon1, Maria Laura Fabre2, Jose Luis Lopez2, Juliet F. Nilsson2, Javier Rios3, Pablo 12 3 3 3 4 13 Lorenzano Menna , Maia Cabrera , Martin Gonzalez Buitron , Mariane Gonçalves Kulik , Sebastian 14 Fernandez-Alberti3, Maria Silvina Fornasari3, Gustavo Parisi3, Antonio Lagares2, Layla Hirsh5, Miguel A.
    [Show full text]
  • Loss of HLTF Function Promotes Intestinal Carcinogenesis Sumit Sandhu1, Xiaoli Wu1, Zinnatun Nabi1, Mojgan Rastegar1,3,4, Sam Kung3, Sabine Mai1,2 and Hao Ding1*
    Sandhu et al. Molecular Cancer 2012, 11:18 http://www.molecular-cancer.com/content/11/1/18 RESEARCH Open Access Loss of HLTF function promotes intestinal carcinogenesis Sumit Sandhu1, Xiaoli Wu1, Zinnatun Nabi1, Mojgan Rastegar1,3,4, Sam Kung3, Sabine Mai1,2 and Hao Ding1* Abstract Background: HLTF (Helicase-like Transcription Factor) is a DNA helicase protein homologous to the SWI/SNF family involved in the maintenance of genomic stability and the regulation of gene expression. HLTF has also been found to be frequently inactivated by promoter hypermethylation in human colon cancers. Whether this epigenetic event is required for intestinal carcinogenesis is unknown. Results: To address the role of loss of HLTF function in the development of intestinal cancer, we generated Hltf deficient mice. These mutant mice showed normal development, and did not develop intestinal tumors, indicating that loss of Hltf function by itself is insufficient to induce the formation of intestinal cancer. On the Apcmin/+ mutant background, Hltf- deficiency was found to significantly increase the formation of intestinal adenocarcinoma and colon cancers. Cytogenetic analysis of colon tumor cells from Hltf -/-/Apcmin/+ mice revealed a high incidence of gross chromosomal instabilities, including Robertsonian fusions, chromosomal fragments and aneuploidy. None of these genetic alterations were observed in the colon tumor cells derived from Apcmin/+ mice. Increased tumor growth and genomic instability was also demonstrated in HCT116 human colon cancer cells in which HLTF expression was significantly decreased. Conclusion: Taken together, our results demonstrate that loss of HLTF function promotes the malignant transformation of intestinal or colonic adenomas to carcinomas by inducing genomic instability.
    [Show full text]
  • Lymph Node Metastasis Is Infrequent in Patients with Highly-Methylated Colorectal Cancer
    ANTICANCER RESEARCH 26: 55-58 (2006) Lymph Node Metastasis is Infrequent in Patients with Highly-methylated Colorectal Cancer KENJI HIBI1 and AKIMASA NAKAO2 1Department of Surgery, Seirei Hospital, 56 Kawanayama-machi, Showa-ku, Nagoya 466-8633; 2Gastroenterological Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8560, Japan Abstract. In this study, the combined methylation status of p16, was found to harbor promoter hypermethylation p16, p14, HLTF, CDH13 and RUNX3 was examined in 59 associated with the loss of protein expression in cancer cells resected primary colorectal cancers using methylation-specific (7). Though homozygous deletions of the p16 locus were not PCR and the methylation status was correlated with the present (8), p16 promoter methylation was detected in clinicopathological features of the affected patients. A colorectal cancer (9). Subsequently, it has been found that significant difference was found in lymph node metastasis human p14 was also silenced by promoter hypermethylation (p=0.0359) on comparing the methylation status in in colorectal cancer (10). p14 interacts with the MDM2 colorectal cancers with lymph node metastasis to those protein and neutralizes the MDM2-mediated degradation without. There was also a significant gender difference of p53. Thus, p14 acts as a tumor suppressor gene via (p=0.0248) when the methylation status was compared. inhibition of p53 degradation. These studies indicated that Colorectal cancer without lymph node metastasis frequently p16 and p14 inactivation due to promoter methylation was exhibited aberrant methylation of the p16, p14, HLTF, important for colorectal tumorigenesis. We previously CDH13 and RUNX3 genes. examined the methylation status of these genes in 86 primary colorectal cancers using methylation-specific PCR There is now strong evidence that a series of genetic (MSP) (11).
    [Show full text]