Amphipoda of the NEP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004
Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004 Andrew N. Cohen, San Francisco Estuary Institute, Oakland, CA Dale R. Calder, Royal Ontario Museum, Toronto, Ontario James T. Carlton, Williams College/Mystic Seaport–Maritime Studies Program, Mystic, CT John W. Chapman, Oregon State University/Hatfield Marine Science Center, Newport, OR Leslie H. Harris, Natural History Museum of Los Angeles County, Los Angeles, CA Taiju Kitayama, Tokyo National Science Museum, Tokyo, Japan Charles C. Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Gretchen Lambert, University of Washington/Friday Harbor Laboratory, Friday Harbor, WA Christina Piotrowski, California Academy of Science, San Francisco, CA Michelle Shouse, U.S. Geological Survey, Menlo Park, CA Luis A. Solórzano, U.S. Food and Drug Administration, Alameda, CA Conducted for the California State Coastal Conservancy, Oakland, CA; San Francisco Bay- Delta Science Consortium and Association of Bay Area Governments, Oakland, CA; National Geographic Society, Washington, DC; and the Rose Foundation, Oakland, CA. Cite as: Cohen, A.N., D.R. Calder, J.T. Carlton, J.W. Chapman, L.H. Harris, T. Kitayama, C.C. Lambert, G. Lambert, C. Piotrowski, M. Shouse and L.A. Solórzano. 2005. Rapid Assessment Shore Survey for Exotic Species in San Francisco Bay - May 2004. Final Report for the California State Coastal Conservancy, Association of Bay Area Governments/San Francisco Bay-Delta Science Consortium, National Geographic Society and Rose Foundation. San Francisco Estuary Institute, Oakland, CA. Introduction Exotic species constitute one of the main environmental stressors in the San Francisco Estuary. To further assess the extent of this problem, we conducted a Rapid Assessment (RA) survey of exotic species at shoreline stations in San Francisco Bay in the spring of 2004. -
Keys to the Hawaiian Marine Gammaridea, 0-30 Meters
J. LAURENS BARNt Keys to the Hawaiian Marine Gammaridea, 0-30 Meters SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Z0°l°iy Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 58 j. -
Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea. -
The Malacostracan Fauna of Two Arctic Fjords (West Spitsbergen): the Diversity And
+ Models OCEANO-95; No. of Pages 24 Oceanologia (2017) xxx, xxx—xxx Available online at www.sciencedirect.com ScienceDirect j ournal homepage: www.journals.elsevier.com/oceanologia/ ORIGINAL RESEARCH ARTICLE The malacostracan fauna of two Arctic fjords (west Spitsbergen): the diversity and distribution patterns of its pelagic and benthic components Joanna Legeżyńska *, Maria Włodarska-Kowalczuk, Marta Gluchowska, Mateusz Ormańczyk, Monika Kędra, Jan Marcin Węsławski Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland Received 14 July 2016; accepted 6 January 2017 KEYWORDS Summary This study examines the performance of pelagic and benthic Malacostraca in two Malacostraca; glacial fjords of west Spitsbergen: Kongsfjorden, strongly influenced by warm Atlantic waters, Arctic; and Hornsund which, because of the strong impact of the cold Sørkapp Current, has more of Svalbard; an Arctic character. The material was collected during 12 summer expeditions organized from Diversity; 1997 to 2013. In all, 24 pelagic and 116 benthic taxa were recorded, most of them widely Distribution distributed Arctic-boreal species. The advection of different water masses from the shelf had a direct impact on the structure of the pelagic Malacostraca communities, resulting in the clear dominance of the sub-arctic hyperiid amphipod Themisto abyssorum in Kongsfjorden and the great abundance of Decapoda larvae in Hornsund. The taxonomic, functional and size compositions of the benthic malacostracan assemblages varied between the two fjords, and also between the glacier-proximate inner bays and the main fjord basins, as a result of the varying dominance patterns of the same assemblage of species. There was a significant drop in species richness in the strongly disturbed glacial bays of both fjords, but only in Hornsund was this accompanied by a significant decrease in density and diversity, probably due to greater isolation and poorer quality of sediment organic matter in its innermost basin. -
The 17Th International Colloquium on Amphipoda
Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries. -
Selected Ecological Studies on Continental Shelf Benthos and Sea Ice Fauna in the Southwestern Beaufort Sea
SELECTED ECOLOGICAL STUDIES ON CONTINENTAL SHELF BENTHOS AND SEA ICE FAUNA IN THE SOUTHWESTERN BEAUFORT SEA by Andrew G. Carey, Jr. with M. A. Boudrias, J. C. Kern, and R. E. Ruff College of Oceanography Oregon State University Corvallis, Oregon 97331 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 6 31 May 1984 1 TABLE OF CONTENTS Page I. Summary of Objectives, Conclusions, and Implications With Respect to OCS Oil and Gas Development . 5 A. Objectives , . 5 B. Conclusions. 5 c. Implications . , . 6 II. Introduction . 7 A. General Nature and Scope of Study . 7 B. Specific Objectives. 8 1. Benthic continental shelf fauna: cross-shelf trends . 8 2. Ice fauna (Narwhal Island): temporal changes . 9 3. Particle flux. 9 4. Voucher collections . 9 c. Relevance to Problems of Petroleum Development . 9 1. Cross-shelf trends . .. 9 2. Ice fauna. 10 3. Particle flux. 10 D. Acknowledgments. 11 III. Current State of Knowledge . 12 A. BenthicFauna. 12 B. Ice Fauna. 12 c. Particle Flux. 14 IV. Study Area . 16 v. Sources, Rationale, and Methods of Data Collection . 18 A. Sources and Rationale . 18 1. Benthic continental shelf fauna . 18 2. Ice fauna (Narwhal Island). 18 3. Particle flux. 18 B. Field and Laboratory Methodology . 18 1. Benthic continental shelf fauna . 18 2. Ice fauna (Narwhal Island). 20 3. Particle flux (Narwhal Island). 22 4. Environmental data (Narwhal Island) . 24 VI. Results. 25 A. Benthic Continental Shelf Fauna: Cross-shelf Trends . 25 B. Ice Fauna (Narwhal Island). 36 1. Ice meiofauna. 36 2. Ice macrofauna . 40 c. Particle Flux to Sediments (Narwhal Island) . -
Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages. -
(Crustacea : Amphipoda) of the Lower Chesapeake Estuaries
W&M ScholarWorks Reports 1971 The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries James Feely Virginia Institute of Marine Science Marvin L. Wass Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/reports Part of the Marine Biology Commons, Oceanography Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Recommended Citation Feely, J., & Wass, M. L. (1971) The distribution and ecology of the Gammaridea (Crustacea : Amphipoda) of the lower Chesapeake estuaries. Special papers in marine science No.2. Virginia Institute of Marine Science, College of William and Mary. http://doi.org/10.21220/V5H01D This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 VIRGIN IA INSTITUTE OF MARINE SC IE NCE Gloucester Point, Virginia 23062 1971 THE DISTRIBUTION AND ECOLOGY OF THE GAMMARIDEA (CRUSTACEA: AMPHIPODA) OF THE LOWER 1 CHESAPEAKE ESTUARIES James B. Feeley and Marvin L. Wass SPECIAL PAPERS IN MARINE SCIENCE NO. 2 1971 VIRGINIA INSTITUTE OF MARINE SCIENCE Gloucester Point, Virginia 23062 This document is in part a thesis by James B. Feeley presented to the School of Marine Science of the College of William and Mary in Virginia in partial fulfillment of the requirements for the degree of Master of Arts. -
Cladistic Revision of Talitroidean Amphipods (Crustacea, Gammaridea), with a Proposal of a New Classification
CladisticBlackwell Publishing, Ltd. revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification CRISTIANA S. SEREJO Accepted: 8 December 2003 Serejo, C. S. (2004). Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification. — Zoologica Scripta, 33, 551–586. This paper reports the results of a cladistic analysis of the Talitroidea s.l., which includes about 400 species, in 96 genera distributed in 10 families. The analysis was performed using PAUP and was based on a character matrix of 34 terminal taxa and 43 morphological characters. Four most parsimonious trees were obtained with 175 steps (CI = 0.617, RI = 0.736). A strict consensus tree was calculated and the following general conclusions were reached. The superfamily Talitroidea is elevated herein as infraorder Talitrida, which is subdivided into three main branches: a small clade formed by Kuria and Micropythia (the Kurioidea), and two larger groups maintained as distinct superfamilies (Phliantoidea, including six families, and Talitroidea s.s., including four). Within the Talitroidea s.s., the following taxonomic changes are proposed: Hyalellidae and Najnidae are synonymized with Dogielinotidae, and treated as subfamilies; a new family rank is proposed for the Chiltoniinae. Cristiana S. Serejo, Museu Nacional/UFRJ, Quinta da Boa Vista s/n, 20940–040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Introduction Table 1 Talitroidean classification following Barnard & Karaman The talitroideans include amphipods ranging in length from 1991), Bousfield (1996) and Bousfield & Hendrycks (2002) 3 to 30 mm, and are widely distributed in the tropics and subtropics. In marine and estuarine environments, they are Superfamily Talitroidea Rafinesque, 1815 Family Ceinidae Barnard, 1972 usually found in shallow water, intertidally or even in the supra- Family Dogielinotidae Gurjanova, 1953 littoral zone. -
Low Diversity of Spongicolous Amphipoda (Crustacea) Observed in the Antarctic Autumn
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Org. Divers. Evol. 1, 133–138 (2001) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ode Low diversity of spongicolous Amphipoda (Crustacea) observed in the Antarctic autumn Anne-Nina Lörz* Zoological Institute and Zoological Museum, Hamburg Received 27 October 2000 · Accepted 4 February 2001 Abstract Sponges represent a major component of the Antarctic zoobenthos.They are known to act as hosts for several invertebrates. In the present in- vestigation a total of 1193 specimens of Amphipoda living in the sponge tissue of three species of Demospongiae were observed.The sponges were collected in the Weddell Sea and at the Antarctic Peninsula in April, during the Antarctic autumn 2000. The population density, species richness, composition, and reproductive biology of the spongicolous Amphipoda was studied. More than 40 individuals were collected per 1000 cm3 sponge tissue. Females of all species had eggs or embryos in their marsupia. Interestingly, their young will be released – even though most of the studied species are filter feeders – in the Antarctic autumn and winter. Spongicolous inquiline Amphipoda may therefore not be in- fluenced by the seasons as much as their free living relatives. Key words: Amphipoda,Antarctica, Demospongiae, reproduction, seasonality, symbiosis Introduction Material and methods Sponges are the major component of many Antarctic During the cruise ANT XVII-3 of RV “Polarstern” several benthic communities (Barthel & Gutt, 1992; McClin- sponges and sponge pieces were collected in April 2000 by tock, 1987; Cattaneo-Vietti et al., 1999). Several means of a bottom trawl. -
Suborder Gammaridea Latreille, 1803
Systematic List of Amphipods Found in British Columbia by Aaron Baldwin, PhD Candidate School of Fisheries and Ocean Science University of Alaska, Fairbanks Questions and comments can be directed to Aaron Baldwin at [email protected] This list is adapted from my unpublished list “Amphipoda of Alaska” that I had maintained from 1999 to about 2004. This list follows the taxonomy of Bousfield (2001b) and utilizes his ranges as confirmed records for British Columbia. It is important to note that I have not updated the original list for about five years, so name changes, range extensions, and new species since that time are unlikely to be included. Because of the relative difficulty in amphipod identification and the shortage of specialists there are undoubtedly many more species that have yet to be discovered and/or named. In cases where I believe that a family or genus will likely be discovered I included a bolded note. Traditional classification divides the amphipods into four suborders, of which three occur on our coast. This classification is utilized here (but see note on Hyperiida at end of list), but is likely artificial as the Hyperiidea and Caprelidea probably nest within the Gammaridea. Myers and Lowry (2003) used molecular work to support elevating the superfamily Corophioidea (Corophoidea) to subordinal status and including the traditional corophoids as well as the caprellids as infraorders within this taxon. These authors cite a reference I do not have (Barnard and Karaman, 1984) as the original source of this classification. As time allows I may include this new and probably better classification updates to this list Key: (?) Author unknown to me and apparently everyone else. -
Marine Amphipoda of Bahia De San Quintin, Baja California
Marine Amphipoda of Bahia de San Quintin, Baja California Item Type article Authors Barnard, J. Laurens Download date 05/10/2021 21:39:10 Link to Item http://hdl.handle.net/1834/27430 MARINE AMPHIPODA OF BAHIA DE SAN QUINTIN, BAJA CALIFORNIA By J. LAURENS BARNARD A hydrobiological survey of Bahia de San Quintin was made in 1960 by the Beaudette Foundation (Barnard 1962d). Benthic samples (fig. 1) were collected with an orange-peel grab of about 650 square centimeters capacity ( 1jl6th square meter). Benthic standing crop of the bay is dominated largely by polychaetes and crustaceans, the Amphipoda forming the principal macroscopic crustacean component. Bahia de San Quintin is the first large enclosed bay south of southern California, wherein such bays have been so altered hy mankind that little original environment remains. Its importance as a study area was viewed in this framework, for it was hoped that sufficient comparisons could he made to suggest the composition of the original fauna in Newport Bay and San Diego Bay of southern California. The fauna of Bahia de San Quintin has proved, however, to have sufficient features of such unusual character and contrast that little progress was made in this line of thinking. THE ENVIRONMENT The bay comprises about 11.7 square nautical miles of water area and opens to the sea by a narrow channel. It is divided into two arms, west and cast. Only the benthos of the east arm has been investigated. Except for narrow channels of depths up to ll meters, most of the bay bottom lies at 2 to :3 meters.