Geological, Structural and Geochronological Framework of the Veladero North Area, Cordillera Frontal, Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Geological, Structural and Geochronological Framework of the Veladero North Area, Cordillera Frontal, Argentina GEOLOGICAL, STRUCTURAL AND GEOCHRONOLOGICAL FRAMEWORK OF THE VELADERO NORTH AREA, CORDILLERA FRONTAL, ARGENTINA By DIEGO CHARCHAFLIE Licenciado en Ciencias Geologicas, Universidad de Buenos Aires, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In THE FACULTY OF GRADUATE STUDIES (Department of Earth and Ocean Sciences) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January 2003 © Diego Charchaflie, 2003 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract The Veladero North area, located in the northern part of the El Indio-Pascua Belt within the Cordillera Frontal of Argentina and Chile, contains gold reserves and resources that combined exceed 370 tons (12 Moz). Throughout the Belt, mineralization is related to Miocene magmatic activity and both high- and low-sulfidation systems have been mined. The Miocene volcanic rocks form several formations separated by unconformities from underlying Carboniferous to Triassic volcanic and plutonic rocks. Whereas age and structural relationship of these rocks are well known in Chile, the geology of the Argentinan flank is poorly documented. This study defines the stratigraphy, geology and tectonic evolution of the Veladero North area and clarifies the regional framework of the Cordillera Frontal in Argentina. Thrust faults that dip steeply (70° to 90°) to the west and back-thrusts that dip steeply (70° to 90°) to the east define the overall geometry of the Miocene fold and thrust belt around the Veladero North area. The thrust panels comprise Permian (259 ± 0.7 Ma to 254 ± 4.2 Ma, U-Pb) rhyolitic volcanic and volcaniclastic rocks assigned to the Guanaco Sonso Formation and late Oligocene to early Miocene (24.5 ± 0.2 Ma to 22.8 ± 1.7 Ma, U-Pb) andesitic to dacitic pyroclastic and sedimentary rocks equivalent to the Tilito Formation. Middle Miocene (15.8 ± 1 Ma, U-Pb and 12.7 ± 0.9 Ma to 11.0 ± 0.2 Ma, 40Ar-39Ar) pyroclastic rocks and shallow intrusives of the Cerro de las Tortolas Formation and Infiernillo Unit, and Vacas Heladas Formation in the study area unconformably overlie the fold and thrust belt. These strata are sub-horizontal or dip shallowly (<20°) to the east, and are separated from the thrusted rocks by two regional, low-relief unconformities. A Pliocene (2.1 ± 0.5 Ma, 40Ar-39Ar) rhyolitic dome in the eastern part of the district forms the Cerro de Vidrio Formation, the youngest recognized unit of the region. Previously published and new geochronological data suggest that late Paleozoic to Triassic magmatism in the Cordillera Frontal occurred as a series of plutonic and volcanic episodes isolated by periods of magmatic quiescence. The Choiyoi Group apparently comprises two independent volcanic units emplaced before and after a 25 m.y. volcanic lull, of which, the older and widespread Permian Guanaco Sonso Formation is exposed in the Veladero North area. Structural relations and geochronology indicate that the largest part of Tertiary deformation in the study area occurred throughout the Miocene, and is best explained by multiple phases of shortening. The youngest host rock of the Veladero North epithermal deposit is a volcanic succession dominated by heterolitic bedded breccias, volcaniclastic sandstones and dome-related rocks equivalent to the (16 Ma to 14.9 Ma) Cerro de las Tortolas Formation and its intrusive counterpart, the Infiernillo Unit. If the mineralization in Veladero North is the same age as that in the rest of El Indio-Pascua Belt (9.5 Ma to 6 Ma), the volcaniclastic package is then several million years older than the mineralization. Thus, the genesis of the package bears little relationship to gold mineralization except for forming a porous host rock for it. Table of contents Abstract ii Table of Contents iv List of Tables vii List of Figures viii Acknowledgements x Chapter 1 General Introduction General Introduction 1 Methodology 3 Presentation 4 Alteration 5 References 6 Chapter 2 Late Paleozoic to early Mesozoic rocks of the Cordillera Frontal of Argentina and Chile with emphasis on the Veladero North Area, San Juan Province, Argentina Abstract 8 Introduction 9 Regional late Paleozoic to early Mesozoic geologic framework 11 Morphostructural elements 11 Basement 13 Gondwana Magmatism 14 Volcanic rocks 17 Choiyoi Group 17 Plutonic rocks 20 Elqui Superunit 20 Ingaguas Superunit 21 Colanguil Batholith 23 Veladero North area geologic setting 26 Volcanic and volcaniclastic rocks 29 Rfo Taguas Package 29 Guanaco Zonzo Package 30 Potrerillos-Canito Package 33 Intrusive rocks 33 iv Geochemistry of late Paleozoic rocks of the Veladero North area 36 Major and trace element geochemistry 40 Rare earth element geochemistry 40 Discussion 41 Summary of Veladero North Sequence 41 Regional correlation 43 Conclusions 46 References 47 Chapter 3 Geological framework of the Veladero North area, Cordillera Frontal, Argentina Abstract 52 Introduction 53 Geologic setting of the El Indio Belt 54 Late Paleozoic to Jurassic basement rocks 58 Tertiary stratigraphy of the El Indio Belt 58 Eocene to early Oligocene rocks 58 Late Oligocene to late Pliocene rocks 61 Structure 63 Remanent late Miocene landforms 64 Miocene volcanic framework of the Veladero North area 64 Tilito Formation 65 Rio Taguas structural package 65 East Veladero structural package 67 West Veladero structural package 68 Andesitic intrusive rocks equivalent to the Tilito Formation 71 Cerro de las Tortolas Formation 78 Veladero Section ; 78 Turbio River Section 81 Fabiana Section 82 Infiernillo Intrusive Unit 83 Vacas Heladas Formation 86 Geochemistry 87 Structural framework of the Veladero North area 91 Lithologic association of the epithermal deposit 94 Timing of deformation 95 Conclusions 99 References 100 Chapter 4 Conclusions and recommendations for future research Conclusions 105 Geology 105 Late Paleozoic volcanic-plutonic arc 106 Miocene volcanism and deformation 106 Lithologic association of the epithermal deposit 107 Recommendations 108 References 109 Appendices Appendix I: Geochronology Ill Conventional U-Pb Ill Guanaco Sonso Formation 112 Tertiary rocks 114 SHRIMP 116 References 118 Appendix II Sample description and location 119 Appendix III XRF and ICP-MS Geochemistry 123 Whole-rock geochemistry 123 Detection limits 123 Appendix IV Alteration 125 List of Tables Chapter 2 Table 2-1: Lithology and geochemistry of Gondwanan magmatism 18 Table 2-2: Geochronologic studies in the Cordillera Frontal 28 Table 2-3: U-Pb geochronology in the Veladero North area 31 Table 2-4: Geochemistry of Permian rocks in the Veladero North area 37 Chapter 3 Table 3-1: Veladero North area SHRIMP data 72 Table 3-2: Veladero North area U-Pb data 74 Table 3-3: Veladero North whole-rock geochemistry 89 List of Figures Chapter 1 Figure 1-1: Location of the Veladero North area 2 Chapter 2 Figure 2-1: Distribution of late Paleozoic - early Mesozoic magmatism of western South America 10 Figure 2-2: Morphostructural elements of the Chilean-Argentinan Andes 12 Figure 2-3: Cordillera Frontal plutonic and volcanic units, major structures and location of geochronological studies 15 Figure 2-4: Magmatic stratigraphy of the Cordillera Frontal 16 Figure 2-5: Geology of the Pascua-Lama-Veladero North area 27 Figure 2-6: Rio Taguas east-west cross-section 29 Figure 2-7: Concordia Plots of Volcanic rocks in the Veladero North area 32 Figure 2-8: Guanaco Zonzo creek exposures 34 Figure 2-9: Concordia Plots of Intrusive rocks in the Veladero North area 35 Figure 2-10: Major and trace element concentration diagrams 38 Figure 2-11: REE diagrams 39 Figure 2-12: Geochronologic studies in the Cordillera Frontal 42 Figure 2-13: Summary of late Paleozoic to Mesozoic magmatic episodes in the Cordillera Frontal of Argentina and Chile 46 Chapter 3 Figure 3-1: Location of the El Indio-Pascua Belt and major Tertiary mineralization districts 54 Figure 3-2: Regional Geology of the El Indio-Pascua Belt and location of major deposits and mines 55 Figure 3-3: Convergence and obliquity between the Nazca and South America plates during the last 40 m.y 57 Figure 3-4: El Indio-Pascua Belt stratigraphy 59 Figure 3-5: Veladero-Pascua-Lama district geology 60 Figure 3-6: Tilito Formation, Rio Taguas structural package 66 Figure 3-7: Tilito Formation, east of Veladero North area 67 Figure 3-8: Tilito Formation, West Veladero structural package 70 Figure 3-9: Tilito Formation intrusives 71 Figure 3-10: SHRIMP data in Veladero North area 73 Figure 3-11: Concordia diagrams, Veladero North data 76 Figure 3-12: Cerro de las Tortolas Formation, Veladero Section 79 Figure 3-13: Cerro de las Tortolas Formation bedding 80 Figure 3-14: Cerro de las Tortolas Formation, south of Turbio river 82 Figure 3-15: Cerro de las Tortolas Formation, Fabiana Prospect area 83 Figure 3-16: Infiernillo Intrusive Unit 84 Figure 3-17: Vacas Heladas Formation 87 Figure 3-18: Whole-rock geochemistry of the Veladero North lithostratigraphic units 88 Figure 3-19: East-west cross section of the northern part of the study area. 92 Figure 3-20: East-west cross section of the southern part of the study area. 92 Figure 3-21: Schematic east-west cross section of the Veladero North area. 97 ix Acknowledgements I arrived to Vancouver in September 2000 with several vague ideas.
Recommended publications
  • Muntean/Einaudi
    Economic Geology Vol. 95, 2000, pp. 1445–1472 Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile JOHN L. MUNTEAN†,* AND MARCO T. EINAUDI Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 Abstract The porphyry gold deposits of the Refugio district and similar deposits in the Maricunga belt contain the lowest known copper to gold ratios (% Cu/ppm Au = ~0.03) of any porphyry-type deposit. The gold deposits are associated with subvolcanic andesitic to dacitic intrusions emplaced into coeval volcanic rocks. Both the Verde and Pancho deposits are zoned in space from a deeper zone of banded quartz veinlets associated with chlorite-magnetite-albite and/or pyrite-albite-clay alteration to a shallow zone of pyrite-albite-clay and local quartz-alunite ledges. Pancho contains an additional, deepest, porphyry copperlike zone, with quartz veinlets (A-veinlets) and potassic alteration. Relative to Verde, Pancho is telescoped, with all three zones present within a 400-m-vertical interval. The porphyry copperlike zone at Pancho is characterized by A-veinlets and pervasive potassic alteration, both restricted to intrusive rocks. A-veinlets range from hairline streaks of magnetite ± biotite with minor quartz and chalcopyrite, and K feldspar alteration envelopes to sugary quartz veinlets <1 cm in width with mag- netite and chalcopyrite and no alteration envelopes. Hypersaline liquid inclusions coexisting with vapor-rich in- clusions indicate temperatures above 600°C and salinities as high as 84 wt percent NaCl equiv. A pressure es- timate of 250 bars indicates a depth of 1,000 m, assuming lithostatic pressure.
    [Show full text]
  • Preliminary Economic Assessment
    Constellation Project incorporating the Los Helados Deposit, Chile and the Josemaría Deposit, Argentina NI 43-101 Technical Report on Preliminary Economic Assessment Prepared for: NGEx Resources Inc. Prepared by: Mr Alfonso Ovalle, RM CMC, Amec Foster Wheeler Mr Cristian Quiñones, RM CMC, Amec Foster Wheeler Mr Cristian Quezada, RM CMC, Amec Foster Wheeler Mr David Frost, FAusIMM, Amec Foster Wheeler Mr Vikram Khera, P.Eng.,Amec Foster Wheeler Mr Gino Zandonai, RM CMC, DGCS SA Effective Date: 12 February 2016 Amended Signature Date: 31 March 2016 Project Number: 179770 CERTIFICATE OF QUALIFIED PERSON I, Alfonso Ovalle, RM CMC, am employed as a Principal Mining Engineer with Amec Foster Wheeler International Ingeniería y Construcción Limitada (“Amec Foster Wheeler”). This certificate applies to the technical report titled “Constellation Project, incorporating the Los Helados Deposit, Chile and the Josemaría Deposit, Argentina, NI 43-101 Technical Report on Preliminary Economic Assessment” that has an effective date of 12 February, 2016 (the “technical report”). I am a Registered Member of the Chilean Mining Commission (RM CMC #243). I graduated from the University of Chile as a Civil Mining Engineer in 1970. I enrolled in a Master of Science in Mineral Economics degree course at the Henry Krumb School of Mines, Columbia University, N.Y. from 1972 to 1973. I have practiced my profession for 47 years since graduation. I have been directly involved in base and precious metals and limestone operations, planning, consulting, and management of underground mines in Chile, Peru, South Africa, Canada and Australia. As a result of my experience and qualifications, I am a Qualified Person as defined in National Instrument 43–101 Standards of Disclosure for Mineral Projects (“NI 43–101”).
    [Show full text]
  • Crustal-Seismicity.Pdf
    Tectonophysics 786 (2020) 228450 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data T ⁎ Agostina Venerdinia,b, , Patricia Alvaradoa,b, Jean-Baptiste Ammiratia,1, Marcos Podestaa, Luciana Lópezc, Facundo Fuentesd, Lepolt Linkimere, Susan Beckf a Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (Consejo Nacional de Investigaciones Científicas y Técnicas CONICET– Facultad de Ciencias Exactas, Físicas y Naturales, UNSJ), San Juan, Argentina b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina c Instituto Nacional de Prevención Sísmica, San Juan, Argentina d YPF S.A., Buenos Aires, Argentina e Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica f Department of Geosciences, University of Arizona, Tucson, AZ, United States ARTICLE INFO ABSTRACT Keywords: In this study, we analyze 100 crustal Precordilleran earthquakes recorded in 2008 and 2009 by 52 broadband Crust seismic stations from the SIEMBRA and ESP, two temporary experiments deployed in the Pampean flat slab Focal mechanism region, between the Andean Cordillera and the Sierras Pampeanas in the Argentine Andean backarc region. Fold-thrust belt In order to determine more accurate hypocenters, focal mechanisms and regional stress orientations, we Andean retroarc relocated 100 earthquakes using the JHD technique and a local velocity model. The focal depths of our relocated Flat slab events vary between 6 and 50 km. We estimated local magnitudes between 0.4 ≤ M ≤ 5.3 and moment South America L magnitudes between 1.3 ≤ Mw ≤ 5.3.
    [Show full text]
  • Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J
    Gondwana Research, G! 7, No. 4, pp. 1105-1 116. 0 2004 International Association for Gondwana Research, Japan. ISSN: 1342-937X Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J. Chernicoff and Eduardo 0. Zappettini2 Council for Scientific and Technical Research (CONICET),Universidad de Buenos Aires, E-mail: [email protected] ' Argentine Geological-Mining Survey (SEGEMAR). Av. Julio A. Roca 651, 8" piso, (1322) Buenos Aires, Argentina, E-mail: [email protected] * Corresponding author (Manuscript received July 24,2003; accepted January 26,2004) Abstract The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquen and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Rio ..... de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as we11 as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Rio de la Plata Craton, separated from each other by large-scale discontinuities.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation
    [Show full text]
  • Minerals-09-00550-V2.Pdf
    minerals Article Implications of Hf Isotopes for the Evolution of the Mantle Source of Magmas Associated with the Giant El Teniente Cu-Mo Megabreccia Deposit, Central Chile Charles R. Stern 1,* , Kwan-Nang Pang 2, Hao-Yang Lee 2, M. Alexandra Skewes 1 and Alejandra Arévalo 3 1 Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA; [email protected] 2 Institute of Earth Sciences, Academia Sinica, Taipei City 115, Taiwan; [email protected] (K.-N.P.); [email protected] (H.-Y.L.) 3 Escuela de Ingeniería, Universidad de O’Higgins, VI Región 2910000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +1-303-492-7170 Received: 27 July 2019; Accepted: 10 September 2019; Published: 12 September 2019 Abstract: We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from 8.9 to 2.3 Ma and ≥ provide information about the temporal evolution of their magmatic sources from the Late Miocene to Pliocene. Together with previously published data, the new analysis indicates a temporal decrease of 10 "Hf(t) units, from +11.6 down to +1.6, in the 12.7 m.y. from 15 to 2.3 Ma. These variations imply increasing incorporation of continental crust through time in the magmas that formed these rocks. The fact that the samples include mantle-derived olivine basalts and olivine lamprophyres suggests that these continental components were incorporated into their mantle source, and not by intra-crustal contamination (MASH).
    [Show full text]
  • A Comparison Based on 3D Regional Traveltime Tomography
    1 Flat vs. Normal Subduction Zones: A Comparison Based on 3D 2 Regional Traveltime Tomography & Petrological Modeling of 3 Central Chile & Western Argentina (29°-35°S) 4 5 M. Marot(1), T. Monfret(1), M. Gerbault(1), G. Nolet(1), G. Ranalli(2), M. Pardo(3) 6 (1) Géoazur, UNSA, IRD, CNRS, OCA, (UMR 7329), 250 Albert Einstein, 06560 Valbonne, France 7 (2) Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B, Canada 8 (3) Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile 9 10 Abstract 11 Beneath central Chile and western Argentina, the subducting oceanic Nazca lithosphere 12 drastically changes geometry from dipping at an angle of 27-35° to horizontal, along the inferred 13 subduction path of the Juan Fernandez seamount Ridge (JFR). The aim of our study is to assess the 14 differences in the seismic properties of the overriding lithosphere in these two regions, in order to 15 better understand its deep structure and the links between its surface deformations and the geometry of 16 the slab. In comparison with previous studies, we show the most complete 3D regional seismic 17 tomography images for this region, whereby we use (1) a larger seismic dataset compiled from several 18 short-term seismic catalogs, (2) a denser seismic array enabling us to better resolve the subduction 19 zone from the trench to the backarc and into the upper ~ 30 km of the slab, and (3) a starting 1D 20 background velocity model specifically calculated for this region and refined over the years.
    [Show full text]
  • Multiple Veining in a Paleo–Accretionary Wedge: the Metamorphic Rock Record of Prograde Dehydration and Transient High Pore- GEOSPHERE, V
    Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE Multiple veining in a paleo–accretionary wedge: The metamorphic rock record of prograde dehydration and transient high pore- GEOSPHERE, v. 16, no. 3 fluid pressures along the subduction interface (Western Series, https://doi.org/10.1130/GES02227.1 11 figures; 2 tables; 1 set of supplemental files central Chile) Jesús Muñoz-Montecinos1,2,*, Samuel Angiboust1,*, Aitor Cambeses3,*, and Antonio García-Casco2,4,* CORRESPONDENCE: 1 [email protected] Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-75005 Paris, France 2Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18002 Granada, Spain 3Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum 44801, Germany CITATION: Muñoz-Montecinos, J., Angiboust, S., 4Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, Armilla, Granada 18100, Spain Cambeses, A., and García-Casco, A., 2020, Multiple veining in a paleo–accretionary wedge: The metamor- phic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction inter- ABSTRACT that the formation of interlayered blueschist and fluid-rock interaction events (Zack and John, 2007). face (Western Series, central Chile): Geosphere, v. 16, greenschist layers in Pichilemu metavolcanics is a Textures recorded in veins yield information on no. 3, p. 765–786, https://doi.org/10.1130/GES02227.1. High pressure–low temperature metamorphic consequence of local bulk composition variations, crack aperture as well as crystal growth kinetics rocks from the late Paleozoic accretionary wedge and that greenschists are generally not formed due during each veining event (Cox and Etheridge, 1983; Science Editor: Shanaka de Silva exposed in central Chile (Pichilemu region) are to selective exhumation-related retrogression of Bons, 2001), while vein-filling mineral assemblages Guest Associate Editor: Gray E.
    [Show full text]
  • LP/HT Metamorphism As a Temporal Marker of Change Of 
    Received Date: 21-Aug-2014 Revised Date: 12-Aug-2015 Accepted Date: 14-Aug-2015 Article Type: Original Article LP/HT metamorphism as a temporal marker of change of deformation style within the Late Palaeozoic accretionary wedge of central Chile T. HYPPOLITO,1,2,* C. JULIANI,1 A. GARCÍA-CASCO,2,3 V. MEIRA,1 A. BUSTAMANTE4 AND C. HALL 5 1Universidade de São Paulo, Instituto de Geociências, Departamento de Geoquímica e Geotectônica, Rua do Lago 562, CEP 05508-080, São Paulo, SP, Brazil 2Departamento de Mineralogía y Petrología, Universidad de Granada, Avda. Fuentenueva SN, 18002, Granada, Spain 3Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. de las Palmeras 4, E-18100 Armilla, Granada, Spain 4Departamento de Geologia, Universidade Federal de Pernambuco, Rua Acadêmico Hélio Ramos Várzea 50740530, Recife, PE, Brazil 5Argon Geochronology Laboratory, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, 48109-1005, Ann Arbor, United States *Corresponding author: (55) 1130914128; [email protected] ABSTRACT A Late Palaeozoic accretionary prism, formed at the southwestern margin of Gondwana from Early Carboniferous to Late Triassic, comprises the Coastal Accretionary Complex of central Chile (34º−41º S). This fossil accretionary system is made up of two parallel contemporaneous metamorphic belts: a high pressure/low temperature belt (HP/LT – Western Series) and a low Author Manuscript pressure/high temperature belt (LP/HT – Eastern Series). However, the timing of deformation events associated with the growth of the accretionary prism (successive frontal accretion and basal This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Continental and Oceanic Crustal Structure of the Pampean Flat Slab Region, Western Argentina, Using Receiver Function Analysis
    Geophysical Journal International Geophys. J. Int. (2011) 186, 45–58 doi: 10.1111/j.1365-246X.2011.05023.x Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results Christine R. Gans,1 Susan L. Beck,1 George Zandt,1 Hersh Gilbert,2 Patricia Alvarado,3 Megan Anderson,4 and Lepolt Linkimer1 1Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. E-mail: [email protected] 2Department of Earth & Atmospheric Sciences, Purdue University, West Lafayette, IN 47907,USA 3Dpto. de Geofisica y Astronom´ıa, FCEFN – Universidad Nacional de San Juan-CONICET, Meglioli 1160 S (5400), San Juan, Argentina 4Department of Geology, Colorado College, Colorado Springs, CO 80903,USA Accepted 2011 March 19. Received 2011 March 17; in original form 2010 December 2 SUMMARY ◦ ◦ The Pampean flat slab of central Chile and Argentina (30 –32 S) has strongly influenced GJI Geodynamics and tectonics Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement- cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ∼100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to ‘normal’ subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis.
    [Show full text]
  • X Congreso Argentino De Paleontología Y Bioestratigrafía VII Congreso Latinoamericano De Paleontología La Plata, Argentina - Septiembre De 2010
    X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 Financian Auspician 1 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 2 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 3 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología Resúmenes/coordinado por Sara Ballent ; Analia Artabe ; Franco Tortello. 1a ed. - La Plata: Museo de la Plata; Museo de la Plata, 2010. 238 p. + CD-ROM; 28x20 cm. ISBN 978-987-95849-7-2 1. Paleontología. 2. Bioestratigrafía. I. Ballent, Sara , coord. II. Artabe, Analia, coord. III. Tortello, Franco, coord. CDD 560 Fecha de catalogación: 27/08/2010 4 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Declarado de Interés Municipal, La Plata (Decreto N° 1158) 5 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 6 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Prólogo Una vez más el Congreso Argentino de Paleontología y Bioestratigrafía y el Congreso Latino- americano de Paleontología se realizan de manera conjunta.
    [Show full text]
  • Geological Framework of the Mineral Deposits of the Collahuasi District
    413 Collahuasi Mineral District / References REFERENCES CITED Aceñolaza, F. G., and Toselli, A. J., 1976, Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del noroeste Argentino: 2º Congreso Latinoamericano de la Geología, p. 755-764. Aeolus-Lee, C.-T., Brandon, A. D. and Norman, M. D., 2003, Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochimica et Cosmochimica Acta 67, 3045–3064. Aeolus-Lee, C.-T., Leeman, W. P., Canil, D., and Xheng-Xue, A. L., 2005, Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions: Journal of Petrology, v. 46, p. 2313-2336. Allen, S. R., and McPhie, J., 2003, Phenocryst fragments in rhyolitic lavas and lava domes: Journal of Volcanology and Geothermal Research, v. 126, p. 263-283. Allmendinger, R. W., Jordan, T. E., Kay, S. M., and Isacks, B. L., 1997, The evolution of the Altiplano-Puna Plateau of the Central Andes: Annual Review of Earth and Planetary Sciences, v. 25, p. 139-174 Allmendinger, R. W., Gonzalez, G., Yu, J., and Isacks, B. L., 2003, The East-West fault scarps of northern Chile: tectonic significance and climatic clues: Actas - 10º Congreso Geológico Chileno, Concepción, 2003. Alonso-Perez, R., Müntener, O., and Ulmer, P., 2009, Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids: Contributions to Mineralpgy and Petrology, v. 157, p. 541–558. Alpers, C. N., and Brimhall, G. H., 1988, Middle Miocene climatic change in the Atacama Desert, northern Chile; evidence from supergene mineralization at La Escondida; with Suppl.
    [Show full text]