LP/HT Metamorphism As a Temporal Marker of Change Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crustal-Seismicity.Pdf
Tectonophysics 786 (2020) 228450 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Crustal seismicity in the Andean Precordillera of Argentina using seismic broadband data T ⁎ Agostina Venerdinia,b, , Patricia Alvaradoa,b, Jean-Baptiste Ammiratia,1, Marcos Podestaa, Luciana Lópezc, Facundo Fuentesd, Lepolt Linkimere, Susan Beckf a Grupo de Sismotectónica, Centro de Investigaciones de la Geósfera y la Biósfera (Consejo Nacional de Investigaciones Científicas y Técnicas CONICET– Facultad de Ciencias Exactas, Físicas y Naturales, UNSJ), San Juan, Argentina b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina c Instituto Nacional de Prevención Sísmica, San Juan, Argentina d YPF S.A., Buenos Aires, Argentina e Escuela Centroamericana de Geología, Universidad de Costa Rica, San José, Costa Rica f Department of Geosciences, University of Arizona, Tucson, AZ, United States ARTICLE INFO ABSTRACT Keywords: In this study, we analyze 100 crustal Precordilleran earthquakes recorded in 2008 and 2009 by 52 broadband Crust seismic stations from the SIEMBRA and ESP, two temporary experiments deployed in the Pampean flat slab Focal mechanism region, between the Andean Cordillera and the Sierras Pampeanas in the Argentine Andean backarc region. Fold-thrust belt In order to determine more accurate hypocenters, focal mechanisms and regional stress orientations, we Andean retroarc relocated 100 earthquakes using the JHD technique and a local velocity model. The focal depths of our relocated Flat slab events vary between 6 and 50 km. We estimated local magnitudes between 0.4 ≤ M ≤ 5.3 and moment South America L magnitudes between 1.3 ≤ Mw ≤ 5.3. -
Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J
Gondwana Research, G! 7, No. 4, pp. 1105-1 116. 0 2004 International Association for Gondwana Research, Japan. ISSN: 1342-937X Geophysical Evidence for Terrane Boundaries in South-Central Argentina Carlos J. Chernicoff and Eduardo 0. Zappettini2 Council for Scientific and Technical Research (CONICET),Universidad de Buenos Aires, E-mail: [email protected] ' Argentine Geological-Mining Survey (SEGEMAR). Av. Julio A. Roca 651, 8" piso, (1322) Buenos Aires, Argentina, E-mail: [email protected] * Corresponding author (Manuscript received July 24,2003; accepted January 26,2004) Abstract The geological interpretation of high-resolution aeromagnetic data over the La Pampa province, in central Argentina, in addition to lower resolution magnetic information from the region of the Neuquen and Colorado basins, leads to the definition of the precise boundaries of the Chilenia, Cuyania, Pampia and Patagonia terranes, as well as that of the Rio ..... de la Plata Craton, within the study region. The high-resolution aeromagnetic survey data are compared and studied in conjunction with all the available geological information, to produce a map of the solid geology of this region, which is largely covered by Quaternary sediments. A number of structures of different magnitudes, as we11 as their relative chronology, are also recognized, i.e., regional faults, sub-regional faults, fractures and shear zones, as well as the most conspicuous magnetic fabric of the basement that reflects its main planar structures. Three different basements are distinguished on the basis of their contrasting magnetic character, and are interpreted to represent the Cuyania and Pampia terranes and the Rio de la Plata Craton, separated from each other by large-scale discontinuities. -
PDF Linkchapter
Index Page numbers in italic denote Figures. Page numbers in bold denote Tables. Abanico extensional basin 2, 4, 68, 70, 71, 72, 420 Andacollo Group 132, 133, 134 basin width analogue modelling 4, 84, 95, 99 Andean margin Abanico Formation 39, 40, 71, 163 kinematic model 67–68 accommodation systems tracts 226, 227, 228, 234, thermomechanical model 65, 67 235, 237 Andean Orogen accretionary prism, Choapa Metamorphic Complex development 1, 3 20–21, 25 deformation 1, 3, 4 Aconcagua fold and thrust belt 18, 41, 69, 70, 72, 96, tectonic and surface processes 1, 3 97–98 elevation 3 deformation 74, 76 geodynamics and evolution 3–5 out-of-sequence structures 99–100 tectonic cycles 13–43 Aconcagua mountain 3, 40, 348, 349 uplift and erosion 7–8 landslides 7, 331, 332, 333, 346–365 Andean tectonic cycle 14,29–43 as source of hummocky deposits 360–362 Cretaceous 32–36 TCN 36Cl dating 363 early period 30–35 aeolian deposits, Frontal Cordillera piedmont 299, Jurassic 29–32 302–303 late period 35–43 Aetostreon 206, 207, 209, 212 andesite aggradation 226, 227, 234, 236 Agrio Formation 205, 206, 207, 209, 210 cycles, Frontal Cordillera piedmont 296–300 Chachahue´n Group 214 Agrio fold and thrust belt 215, 216 Neuque´n Basin 161, 162 Agrio Formation 133, 134, 147–148, 203, Angualasto Group 20, 22, 23 205–213, 206 apatite ammonoids 205, 206–211 fission track dating 40, 71, 396, 438 stratigraphy 33, 205–211 (U–Th)/He thermochronology 40, 75, 387–397 Agua de la Mula Member 133, 134, 205, 211, 213 Ar/Ar age Agua de los Burros Fault 424, 435 Abanico Formation -
Crustal Faults in the Chilean Andes: Geological Constraints and Seismic Potential
Andean Geology 46 (1): 32-65. January, 2019 Andean Geology doi: 10.5027/andgeoV46n1-3067 www.andeangeology.cl Crustal faults in the Chilean Andes: geological constraints and seismic potential *Isabel Santibáñez1, José Cembrano2, Tiaren García-Pérez1, Carlos Costa3, Gonzalo Yáñez2, Carlos Marquardt4, Gloria Arancibia2, Gabriel González5 1 Programa de Doctorado en Ciencias de la Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected] 2 Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected]; [email protected]; [email protected] 3 Departamento de Geología, Universidad de San Luis, Ejercito de Los Andes 950, D5700HHW San Luis, Argentina. [email protected] 4 Departamento de Ingeniería Estructural y Geotécnica y Departamento de Ingeniería de Minería, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna 4860, Macul, Santiago, Chile. [email protected] 5 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Angamos 0610, Antofagasta, Chile. [email protected] * Corresponding author: [email protected] ABSTRACT. The Chilean Andes, as a characteristic tectonic and geomorphological region, is a perfect location to unravel the geologic nature of seismic hazards. The Chilean segment of the Nazca-South American subduction zone has experienced mega-earthquakes with Moment Magnitudes (Mw) >8.5 (e.g., Mw 9.5 Valdivia, 1960; Mw 8.8 Maule, 2010) and many large earthquakes with Mw >7.5, both with recurrence times of tens to hundreds of years. By contrast, crustal faults within the overriding South American plate commonly have longer recurrence times (thousands of years) and are known to produce earthquakes with maximum Mw of 7.0 to 7.5. -
Minerals-09-00550-V2.Pdf
minerals Article Implications of Hf Isotopes for the Evolution of the Mantle Source of Magmas Associated with the Giant El Teniente Cu-Mo Megabreccia Deposit, Central Chile Charles R. Stern 1,* , Kwan-Nang Pang 2, Hao-Yang Lee 2, M. Alexandra Skewes 1 and Alejandra Arévalo 3 1 Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA; [email protected] 2 Institute of Earth Sciences, Academia Sinica, Taipei City 115, Taiwan; [email protected] (K.-N.P.); [email protected] (H.-Y.L.) 3 Escuela de Ingeniería, Universidad de O’Higgins, VI Región 2910000, Chile; [email protected] * Correspondence: [email protected]; Tel.: +1-303-492-7170 Received: 27 July 2019; Accepted: 10 September 2019; Published: 12 September 2019 Abstract: We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from 8.9 to 2.3 Ma and ≥ provide information about the temporal evolution of their magmatic sources from the Late Miocene to Pliocene. Together with previously published data, the new analysis indicates a temporal decrease of 10 "Hf(t) units, from +11.6 down to +1.6, in the 12.7 m.y. from 15 to 2.3 Ma. These variations imply increasing incorporation of continental crust through time in the magmas that formed these rocks. The fact that the samples include mantle-derived olivine basalts and olivine lamprophyres suggests that these continental components were incorporated into their mantle source, and not by intra-crustal contamination (MASH). -
A Comparison Based on 3D Regional Traveltime Tomography
1 Flat vs. Normal Subduction Zones: A Comparison Based on 3D 2 Regional Traveltime Tomography & Petrological Modeling of 3 Central Chile & Western Argentina (29°-35°S) 4 5 M. Marot(1), T. Monfret(1), M. Gerbault(1), G. Nolet(1), G. Ranalli(2), M. Pardo(3) 6 (1) Géoazur, UNSA, IRD, CNRS, OCA, (UMR 7329), 250 Albert Einstein, 06560 Valbonne, France 7 (2) Department of Earth Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B, Canada 8 (3) Departamento de Geofísica, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile 9 10 Abstract 11 Beneath central Chile and western Argentina, the subducting oceanic Nazca lithosphere 12 drastically changes geometry from dipping at an angle of 27-35° to horizontal, along the inferred 13 subduction path of the Juan Fernandez seamount Ridge (JFR). The aim of our study is to assess the 14 differences in the seismic properties of the overriding lithosphere in these two regions, in order to 15 better understand its deep structure and the links between its surface deformations and the geometry of 16 the slab. In comparison with previous studies, we show the most complete 3D regional seismic 17 tomography images for this region, whereby we use (1) a larger seismic dataset compiled from several 18 short-term seismic catalogs, (2) a denser seismic array enabling us to better resolve the subduction 19 zone from the trench to the backarc and into the upper ~ 30 km of the slab, and (3) a starting 1D 20 background velocity model specifically calculated for this region and refined over the years. -
Differential Late Paleozoic Active Margin Evolution in South-Central Chile (37°S-40°S) -The Lanalhue Fault Zone
Originally published as: Glodny, J., Echtler, H., Collao, S., Ardiles, M., Burón, P., Figueroa, O. (2008): Differential Late Paleozoic active margin evolution in South-Central Chile (37°S-40°S) -The Lanalhue Fault Zone. - Journal of South American Earth Sciences, 26, 4, 397-411 DOI: 10.1016/j.jsames.2008.06.001. Accepted Manuscript Differential Late Paleozoic active margin evolution in South-Central Chile (37°S-40°S) -The Lanalhue Fault Zone Johannes Glodny, Helmut Echtler, Santiago Collao, Mary Ardiles, Pablo Burón, Oscar Figueroa PII: S0895-9811(08)00053-9 DOI: 10.1016/j.jsames.2008.06.001 Reference: SAMES 759 To appear in: Journal of South American Earth Sciences Received Date: 17 January 2008 Accepted Date: 5 June 2008 Please cite this article as: Glodny, J., Echtler, H., Collao, S., Ardiles, M., Burón, P., Figueroa, O., Differential Late Paleozoic active margin evolution in South-Central Chile (37°S-40°S) -The Lanalhue Fault Zone, Journal of South American Earth Sciences (2008), doi: 10.1016/j.jsames.2008.06.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Differential Late Paleozoic active margin -
Multiple Veining in a Paleo–Accretionary Wedge: the Metamorphic Rock Record of Prograde Dehydration and Transient High Pore- GEOSPHERE, V
Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE Multiple veining in a paleo–accretionary wedge: The metamorphic rock record of prograde dehydration and transient high pore- GEOSPHERE, v. 16, no. 3 fluid pressures along the subduction interface (Western Series, https://doi.org/10.1130/GES02227.1 11 figures; 2 tables; 1 set of supplemental files central Chile) Jesús Muñoz-Montecinos1,2,*, Samuel Angiboust1,*, Aitor Cambeses3,*, and Antonio García-Casco2,4,* CORRESPONDENCE: 1 [email protected] Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-75005 Paris, France 2Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18002 Granada, Spain 3Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum 44801, Germany CITATION: Muñoz-Montecinos, J., Angiboust, S., 4Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, Armilla, Granada 18100, Spain Cambeses, A., and García-Casco, A., 2020, Multiple veining in a paleo–accretionary wedge: The metamor- phic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction inter- ABSTRACT that the formation of interlayered blueschist and fluid-rock interaction events (Zack and John, 2007). face (Western Series, central Chile): Geosphere, v. 16, greenschist layers in Pichilemu metavolcanics is a Textures recorded in veins yield information on no. 3, p. 765–786, https://doi.org/10.1130/GES02227.1. High pressure–low temperature metamorphic consequence of local bulk composition variations, crack aperture as well as crystal growth kinetics rocks from the late Paleozoic accretionary wedge and that greenschists are generally not formed due during each veining event (Cox and Etheridge, 1983; Science Editor: Shanaka de Silva exposed in central Chile (Pichilemu region) are to selective exhumation-related retrogression of Bons, 2001), while vein-filling mineral assemblages Guest Associate Editor: Gray E. -
Continental and Oceanic Crustal Structure of the Pampean Flat Slab Region, Western Argentina, Using Receiver Function Analysis
Geophysical Journal International Geophys. J. Int. (2011) 186, 45–58 doi: 10.1111/j.1365-246X.2011.05023.x Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results Christine R. Gans,1 Susan L. Beck,1 George Zandt,1 Hersh Gilbert,2 Patricia Alvarado,3 Megan Anderson,4 and Lepolt Linkimer1 1Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA. E-mail: [email protected] 2Department of Earth & Atmospheric Sciences, Purdue University, West Lafayette, IN 47907,USA 3Dpto. de Geofisica y Astronom´ıa, FCEFN – Universidad Nacional de San Juan-CONICET, Meglioli 1160 S (5400), San Juan, Argentina 4Department of Geology, Colorado College, Colorado Springs, CO 80903,USA Accepted 2011 March 19. Received 2011 March 17; in original form 2010 December 2 SUMMARY ◦ ◦ The Pampean flat slab of central Chile and Argentina (30 –32 S) has strongly influenced GJI Geodynamics and tectonics Cenozoic tectonics in western Argentina, which contains both the thick-skinned, basement- cored uplifts of the Sierras Pampeanas and the thin-skinned Andean Precordillera fold and thrust belt. In this region of South America, the Nazca Plate is subducting nearly horizontally beneath the South American Plate at ∼100 km depth. To gain a better understanding of the deeper structure of this region, including the transition from flat to ‘normal’ subduction to the south, three IRIS-PASSCAL arrays of broad-band seismic stations have been deployed in central Argentina. Using the dense SIEMBRA array, combined with the broader CHARGE and ESP arrays, the flat slab is imaged for the first time in 3-D detail using receiver function (RF) analysis. -
X Congreso Argentino De Paleontología Y Bioestratigrafía VII Congreso Latinoamericano De Paleontología La Plata, Argentina - Septiembre De 2010
X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 Financian Auspician 1 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 2 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 3 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía y VII Congreso Latinoamericano de Paleontología Resúmenes/coordinado por Sara Ballent ; Analia Artabe ; Franco Tortello. 1a ed. - La Plata: Museo de la Plata; Museo de la Plata, 2010. 238 p. + CD-ROM; 28x20 cm. ISBN 978-987-95849-7-2 1. Paleontología. 2. Bioestratigrafía. I. Ballent, Sara , coord. II. Artabe, Analia, coord. III. Tortello, Franco, coord. CDD 560 Fecha de catalogación: 27/08/2010 4 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Declarado de Interés Municipal, La Plata (Decreto N° 1158) 5 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 6 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología La Plata, Argentina - Septiembre de 2010 X Congreso Argentino de Paleontología y Bioestratigrafía VII Congreso Latinoamericano de Paleontología Prólogo Una vez más el Congreso Argentino de Paleontología y Bioestratigrafía y el Congreso Latino- americano de Paleontología se realizan de manera conjunta. -
GOCE Satellite Derived Gravity and Gravity Gradient Corrected for Topographic Effect in the South Central Andes Region
Geophysical Journal International Geophys. J. Int. (2012) 190, 941–959 doi: 10.1111/j.1365-246X.2012.05556.x GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region Orlando Alvarez,´ 1 Mario Gimenez,1 Carla Braitenberg2 and Andres Folguera3 1Instituto Geof´ısico y Sismologico´ Ing. Volponi, Universidad Nacional de San Juan, Ruta 12-Km17, San Juan, Argentina. E-mail: [email protected] 2Dipartimento di Matematica e Geoscience, Universita` di Trieste, Via Weiss 1, 34100 Trieste, Italy 3INDEAN – Instituto de Estudios Andinos “Don Pablo Groeber”, Departamento de Cs. Geologicas´ – FCEN – Pab. II, Universidad de Buenos Aires, Argentina Accepted 2012 May 24. Received 2012 April 9; in original form 2011 December 6 SUMMARY Global gravity field models, derived from satellite measurements integrated with terrestrial observations, provide a model of the Earth’s gravity field with high spatial resolution and ac- curacy. The Earth Gravity Model EGM08, a spherical harmonic expansion of the geopotential up to degree and order 2159, has been used to calculate two functionals of the geopotential: the gravity anomaly and the vertical gravity gradient applied to the South Central Andes area. The satellite-only field of the highest resolution has been developed with the observations of satellite GOCE, up to degree and order 250. The topographic effect, a fundamental quantity for the downward continuation and validation of satellite gravity gradiometry data, was calculated from a digital elevation model which was converted into a set of tesseroids. This data is used to calculate the anomalous potential and vertical gravity gradient. In the Southern Central Andes region the geological structures are very complex, but not well resolved. -
5. Ciclos Pampeano Y Famatiniano En Argentina Y Chile 2017
CICLOS PAMPEANO Y FAMATINIANO Ciclos Pampeano y Famatiniano “X” + Patagonia UP - GONDWANA ASSEMBLY III Chilenia CONTINENTAL BREAK CONTINENTAL I UP - Cuyania + Arequipa-Antofalla UP - II P A L E O Z O I C RODINIA BREAK RODINIA - INITIAL BREAK INITIAL FINAL ASSEMBLY & POST Pampia NEOPROTEROZOICO Ciclos Pampeano y Famatiniano Etapa colisional o acrecionaria Terrenos acrecionados al margen de Gondwana en Argentina y Chile centrales •Pampia •Cuyania (terreno compuesto por Precordillera y Sierra Pié de Palo), en Argentina central. •Arequipa-Antofalla (AAT) o Macizo de Arequipa (2,0 - 1,8 Ga; edad Grenvilliana) en el N de Chile y Argentina y en Bolivia •Chilenia, en Chile y Argentina centrales. Ciclos Pampeano y Famatiniano Contexto geodinámico Con el desmembramiento de Rodinia (y Pannotia, según Dalziel) (<750 Ma), se habría separado Laurentia del Río de la Plata. Fragmentos de Laurentia, con edades grenvillianas, desprendidos con el desmembramiento habrían vuelto a colisionar contra el cratón del Río de la Plata. Uno de ellos es Pampia, que colisionó en el Cámbrico Medio. En la cuenca extensional, oceánica formada entre Laurentia y Pampia El supercontinente Rodinia (~800 Ma). Las bandas se depositó la Formación Puncoviscana. grises corresponden a los cinturones orogénicos de edad Grenvillina (circa 1100-1000 Ma) (tomado de Benedetto, 2010). La línea café marca la ubicación de La colisión final de Pampia determinó la los perfiles que se muestran más adelante. Orogenia Pampeana en el Cámbrico Medio (~530 Ma), que puso fin al Ciclo Pampeano. El Terreno Pampia The Eastern Sierras Pampeanas (Terreno Córdoba, Benedetto, 2010) comprises an orogenic belt characterized by metamorphic rocks of middle-to-high amphibolite facies, low-grade metapelites and granulite facies meta-basic rocks (Gordillo 1984; Kraemer et al.