Homomorphism Problems for First-Order Definable Structures
Homomorphism Problems for First-Order Definable Structures∗ Bartek Klin1, Sławomir Lasota1, Joanna Ochremiak2, and Szymon Toruńczyk1 1 University of Warsaw 2 Universitat Politécnica de Catalunya Abstract We investigate several variants of the homomorphism problem: given two relational structures, is there a homomorphism from one to the other? The input structures are possibly infinite, but definable by first-order interpretations in a fixed structure. Their signatures can be either finite or infinite but definable. The homomorphisms can be either arbitrary, or definable with parameters, or definable without parameters. For each of these variants, we determine its decidability status. 1998 ACM Subject Classification F.4.1 Mathematical Logic–Model theory, F.4.3 Formal Lan- guages–Decision problems Keywords and phrases Sets with atoms, first-order interpretations, homomorphism problem Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.? 1 Introduction First-order definable sets, although usually infinite, can be finitely described and are therefore amenable to algorithmic manipulation. Definable sets (we drop the qualifier first-order in what follows) are parametrized by a fixed underlying relational structure A whose elements are called atoms. We shall assume that the first-order theory of A is decidable. To simplify the presentation, unless stated otherwise, let A be a countable set {1, 2, 3,...} equipped with the equality relation only; we shall call this the pure set. I Example 1. Let V = {{a, b} | a, b ∈ A, a 6= b } , E = { ({a, b}, {c, d}) | a, b, c, d ∈ A, a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d } .
[Show full text]