Extracellular Matrix in Lung Development, Homeostasis and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Extracellular Matrix in Lung Development, Homeostasis and Disease Review MATBIO-1455; No. of pages: 28; 4C: Extracellular matrix in lung development, homeostasis and disease Yong Zhou a, Jeffrey C. Horowitz b, Alexandra Naba c, Namasivayam Ambalavanan d, Kamran Atabai e, Jenna Balestrini f, Peter B. Bitterman g, Richard A. Corley h, Bi-Sen Ding i, Adam J. Engler j, Kirk C. Hansen k, James S. Hagood l, Farrah Kheradmand m, Qing S. Lin n, Enid Neptune o, Laura Niklason f, Luis A. Ortiz p, William C. Parks q,DanielJ.Tschumperlinr,EricS.Whiteb, Harold A. Chapman s and Victor J. Thannickal a a - Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, United States b - Division of Pulmonary and Critical Care Medicine, University of Michigan, United States c - Department of Physiology & Biophysics, University of Illinois at Chicago, United States d - Department of Pediatrics, University of Alabama at Birmingham, United States e - Lung Biology Center, University of California, San Francisco, United States f - Department of Anesthesiology, Yale University, United States g - Department of Medicine, University of Minnesota, United States h - Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, United States i - Weill Cornell Medical College, United States j - Sanford Consortium for Regenerative Medicine, University of California, San Diego, United States k - Biochemistry & Molecular Genetics, University of Colorado Denver, United States l - Pediatric Respiratory Medicine, University of California San Diego, United States m - Division of Pulmonary and Critical Care, Baylor College of Medicine, United States n - Division of Lung Diseases, National Heart, Lung, and Blood Institute, United States o - Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, United States p - Division of Environmental and Occupational Health, University of Pittsburgh, United States q - Department of Medicine, Cedars-Sinai Medical Center, United States r - Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, United States s - Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, United States Correspondence to Victor J. Thannickal: Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, 1720 2nd Avenue South, Birmingham, AL 35294, United States. [email protected] https://doi.org/10.1016/j.matbio.2018.03.005 Abstract The lung's unique extracellular matrix (ECM), while providing structural support for cells, is critical in the regulation of developmental organogenesis, homeostasis and injury-repair responses. The ECM, via biochemical or biomechanical cues, regulates diverse cell functions, fate and phenotype. The composition and function of lung ECM become markedly deranged in pathological tissue remodeling. ECM-based therapeutics and bioengineering approaches represent promising novel strategies for regeneration/repair of the lung and treatment of chronic lung diseases. In this review, we assess the current state of lung ECM biology, including fundamental advances in ECM composition, dynamics, topography, and biomechanics; the role of the ECM in normal and aberrant lung development, adult lung diseases and autoimmunity; and ECM in the regulation of the stem cell niche. We identify opportunities to advance the field of lung ECM biology and provide a set recommendations for research priorities to advance knowledge that would inform novel approaches to the pathogenesis, diagnosis, and treatment of chronic lung diseases. © 2017 Published by Elsevier B.V. 0022-2836/© 2017 Published by Elsevier B.V. Matrix Biol. (2017) xx, xxxxxx Please cite this article as: Y. Zhou, et al., Extracellular matrix in lung development, homeostasis and disease, Matrix Biol (2017), https://doi.org/10.1016/j.matbio.2018.03.005 2 Review: ECM in lung development, homeostasis and disease Introduction and maintenance of the stem cell niche. The potential for ECM-based therapeutics for chronic lung diseases Over the last three decades, our understanding of is considered. Our goal is to identify specific areas that the many, diverse roles of the extracellular matrix represent gaps in our understanding of ECM biology, (ECM) in mammalian biology have greatly advanced. and to provide a set of recommendations for research It is now well established that, in addition to providing a priorities to advance the field of lung ECM biology. scaffold for cells, the ECM provides essential bio- chemical and biomechanical cues directing tissue morphogenesis during development, homeostasis The ECM in lung development and injury-repair responses. The lung is characterized by a unique ECM composition and function that The lung begins as a respiratory diverticulum (lung becomes markedly deranged in childhood disorders bud) from the foregut at approximately 5 weeks such as bronchopulmonary dysplasia (BPD), and post-conception in the human embryo and develops adult diseases such as chronic obstructive pulmonary by stages until full development is complete. Alveo- disease (COPD) and idiopathic pulmonary fibrosis logenesis is thought to proceed well into post-natal life (IPF) (Fig. 1). in humans, reaching the maximal number of 200–300 In this review, we assess the current state of the field million during early adolescence [1]. The stages of of lung ECM biology, and identify opportunities to lung development consist of a pseudoglandular advance knowledge that would inform novel ap- stage (human: 5–17 weeks of gestation; mouse: proaches to understand, diagnose, and treat lung E9.5-E16.6), canalicular stage (human: 16–25 diseases of childhood and adults. Areas of focus in this weeks; mouse: E16.6-E17.4), terminal saccular review include fundamental advances in ECM com- stage (human: 24–32 or 36 weeks; mouse: position, dynamics, topography, and biomechanics; E17.4-P5), and the alveolar stage (human: 32 or the role of the ECM in normal lung development and 36 weeks to childhood or early teen years; mouse: aberrant development; ECM dynamics and altered P5-P28 or P42) [2,3]. During these stages, the initial deposition in adult lung diseases, namely COPD and processes of branching morphogenesis, vasculogen- IPF; the role of ECM in inflammation/autoimmunity; esis and angiogenesis transition to alveolar septation Fig. 1. Role of the ECM in lung homeostasis and disease. Normal lung ECM is critical for embryonic lung development and the maintenance of lung homeostasis in adulthood. Aberrant alterations of the properties of lung ECM, including composition, biomechanics, dynamics and topography, are characteristic of a number of adult and child lung diseases, including IPF, COPD and BPD. IPF = idiopathic pulmonary fibrosis; COPD = chronic obstructive pulmonary disease; BPD = bronchopulmonary dysplasia. Please cite this article as: Y. Zhou, et al., Extracellular matrix in lung development, homeostasis and disease, Matrix Biol (2017), https://doi.org/10.1016/j.matbio.2018.03.005 Review: ECM in lung development, homeostasis and disease 3 and maturation accompanied by marked changes branching is occurring can induce branching of in lung ECM composition. The two main concepts epithelial tissue where it does not, otherwise, occur regarding ECM in lung development are: (1) the lung [17]. During early human lung development, the ECM, not only provides vital physical support or a collagens I, III, and VI and PGs (decorin, biglycan, “scaffold” for resident cells of the lung and contributes and lumican) are primarily seen at the to its mechanical properties but, is also essential for epithelial-mesenchymal interface, forming a sleeve biophysical and biochemical signaling of lung cells, around the developing airways [18]. The PG compo- and (2) reciprocally, lung cells regulate the production nent of the ECM may regulate airway branching, in and deposition of ECM over the course of develop- part related to the ability of sulfated PGs to bind ment [4]. The processes by which ECM regulates lung FGF10, which is necessary for branching [19]. cells and lung cells, in turn, produce or break down Comprehensive gene expression profiling of murine ECM are critical to normal lung development; alter- lung development identified patterns of ECM gene ations in these processes may lead to impaired lung expression, and determined possible relationships development such as that seen in BPD. Additionally, among groups of these genes that coordinate defined abnormal recapitulation of developmental processes developmental processes [20]. may contribute to disorders such as IPF, pulmonary arterial hypertension, or lung cancer with correspond- Alveolar septation and ECM ing alterations in the ECM [5,6]. The composition and topography of lung ECM The saccular stage is characterized by further changes over the course of lung development, and is widening of the air spaces and a thinner air-blood very heterogeneous depending on location (e.g. close interface, accompanied by a reduction in the mesen- to bronchi, in alveolar septum, in pleura etc.) and chymal ECM, and organized deposition of elastin developmental stage (e.g. saccular stage vs. early which is maximal along the sites of the future alveolar septation vs. mature adult lung). The lung secondary crests (alveolar septa) [4]. Tropoelastin, ECM in fetal, neonatal and adult tissues are distinct, the precursor of elastin, is produced during alveolar and temporally regulates the shape, migration, differ- septation and is cross-linked by lysyl oxidase, and this entiation of resident cells
Recommended publications
  • Global Analysis Reveals the Complexity of the Human Glomerular Extracellular Matrix
    Global analysis reveals the complexity of the human glomerular extracellular matrix Rachel Lennon,1,2 Adam Byron,1,* Jonathan D. Humphries,1 Michael J. Randles,1,2 Alex Carisey,1 Stephanie Murphy,1,2 David Knight,3 Paul E. Brenchley,2 Roy Zent,4,5 and Martin J. Humphries.1 1Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; 2Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; 3Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, UK; 4Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; and 5Veterans Affairs Hospital, Nashville, TN, USA. *Present address: Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. Running title: Proteome of the glomerular matrix Word count: Abstract: 208, main text 2765 Corresponding author: Dr Rachel Lennon, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK. Phone: 0044 (0) 161 2755498. Fax: 0044 (0) 161 2755082. Email: [email protected] Abstract The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. Here, we employed mass spectrometry–based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalogue includes all previously identified glomerular components, plus many new and abundant components.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • Human Periprostatic Adipose Tissue: Secretome from Patients With
    CANCER GENOMICS & PROTEOMICS 16 : 29-58 (2019) doi:10.21873/cgp.20110 Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia PAULA ALEJANDRA SACCA 1, OSVALDO NÉSTOR MAZZA 2, CARLOS SCORTICATI 2, GONZALO VITAGLIANO 3, GABRIEL CASAS 4 and JUAN CARLOS CALVO 1,5 1Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina; 2Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital “José de San Martín”, Buenos Aires, Argentina; 3Department of Urology, Deutsches Hospital, Buenos Aires, Argentina; 4Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina; 5Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina Abstract. Background/Aim: Periprostatic adipose tissue Prostate cancer (PCa) is the second most common cancer in (PPAT) directs tumour behaviour. Microenvironment secretome men worldwide. While most men have indolent disease, provides information related to its biology. This study was which can be treated properly, the problem consists in performed to identify secreted proteins by PPAT, from both reliably distinguishing between indolent and aggressive prostate cancer and benign prostate hyperplasia (BPH) disease. Evidence shows that the microenvironment affects patients. Patients and Methods: Liquid chromatography-mass tumour behavior. spectrometry-based proteomic analysis was performed in Adipose tissue microenvironment is now known to direct PPAT-conditioned media (CM) from patients with prostate tumour growth, invasion and metastases (1, 2). Adipose cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or tissue is adjacent to the prostate gland and the site of benign disease (CM-BPH). Results: The highest number and invasion of PCa.
    [Show full text]
  • Maturation, Playing Position and Genetic Variation
    MATURATION, PLAYING POSITION AND GENETIC VARIATION: INJURY RISK FACTORS IN HIGH-LEVEL YOUTH SOCCER ELLIOTT C R HALL A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy September 2019 ACKNOWLEDGEMENTS I wish to thank all those who have helped me in completing this PhD thesis, particularly my supervisory team. It has been a privilege to work with and learn from you all, and I am extremely grateful for the opportunity. I would like to express sincere gratitude to my Director of Studies, Dr. Rob Erskine, firstly for considering me for this PhD, and secondly for the exceptional guidance and support throughout the project. The work ethic, passion and drive you have displayed has motivated me to perform to the best of my ability, and my development has been guided by your valuable knowledge and experience. I hope the faith you displayed in nominating me for this project has been in some way repaid by the work we have achieved. I would like to thank Professor Barry Drust. I feel very fortunate to have had the opportunity to work under your guidance, particularly as this project involves a sport to which you have contributed so much invaluable knowledge and passion. Importantly, you have helped me to see things differently than I did at the start of this journey, and to see the ‘bigger picture’ in academic and personal life. It is also imperative to mention your support during participant recruitment, which contributed significantly to the success of this project.
    [Show full text]
  • Original Article FREM2 Is an Independent Predictor of Poor Survival in Clear Cell Renal Cell Carcinoma-Evidence from the Cancer Genome Atlas (TCGA)
    Int J Clin Exp Med 2019;12(12):13741-13748 www.ijcem.com /ISSN:1940-5901/IJCEM0076963 Original Article FREM2 is an independent predictor of poor survival in clear cell renal cell carcinoma-evidence from the cancer genome atlas (TCGA) Weiping Huang, Yongyong Lu, Xixi Huang, Feng Wang, Zhixian Yu Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China Received February 26, 2018; Accepted October 7, 2018; Epub December 15, 2019; Published December 30, 2019 Abstract: Fraser syndrome protein 1 (FRAS1) and FRAS1 related extracellular matrix protein 1 and 2 (FREM1, FREM2) are a novel group of basement membrane proteins. The relationship between the three gene (FRAS1, FREM1, FREM2) and renal clear cell carcinoma is completely unclear. Thus, in this research, we used the mRNA sequencing data derived from TCGA kidney renal clear cell carcinoma cohort to assess the association of FRAS1, FREM1 and FREM2 with different clinical features. FRAS1, FREM1 and FREM2 mRNA levels were downregulated in KIRC (kidney renal clear cell carcinoma) tissues than normal tissues (FRAS1, P < 0.0001; FREM1, P < 0.0001, FREM2, P = 0.0001), respectively. FRAS1, FREM1 and FREM2 were significantly different in histologic grade, patho- logic stage and pathologic T (all P < 0.001). Low FRAS1, FREM1 and FREM2 expression were correlated to worsen overall survival (all P < 0.01), and Low FREM1 and FREM2 expression had worse relapse-free survival (FREM1, P = 0.0113; FREM2, P = 0.0424). Multivariate Cox regression analysis revealed that FREM2 was an independent prog- nostic factor for overall survival. Taken together, FREM2 expression is an independent predictor of poor survival in renal clear cell carcinoma and is positively associated with advanced stage, high histologic grade.
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • The EMILIN/Multimerin Family
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE REVIEW ARTICLE published: 06 Januaryprovided 2012 by Frontiers - Publisher Connector doi: 10.3389/fimmu.2011.00093 The EMILIN/multimerin family Alfonso Colombatti 1,2,3*, Paola Spessotto1, Roberto Doliana1, Maurizio Mongiat 1, Giorgio Maria Bressan4 and Gennaro Esposito2,3 1 Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, Aviano, Italy 2 Department of Biomedical Science and Technology, University of Udine, Udine, Italy 3 Microgravity, Ageing, Training, Immobility Excellence Center, University of Udine, Udine, Italy 4 Department of Histology Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy Edited by: Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Uday Kishore, Brunel University, UK Multimerin1, and Multimerin2) constitute a four member family that in addition to the Reviewed by: shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a Uday Kishore, Brunel University, UK Kenneth Reid, Green Templeton N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and College University of Oxford, UK assemble into high molecular weight multimers. They are predominantly expressed in *Correspondence: the extracellular matrix and contribute to several cellular functions in part associated with Alfonso Colombatti, Division of the gC1q domain and in part not yet assigned nor linked to other specific regions of the Experimental Oncology 2, Centro di sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacil- Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico, lus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and 33081 Aviano, Italy.
    [Show full text]
  • TSPAN9 and EMILIN1 Synergistically Inhibit the Migration and Invasion Of
    Qi et al. BMC Cancer (2019) 19:630 https://doi.org/10.1186/s12885-019-5810-2 RESEARCHARTICLE Open Access TSPAN9 and EMILIN1 synergistically inhibit the migration and invasion of gastric cancer cells by increasing TSPAN9 expression Yaoyue Qi1, Jing Lv2, Shihai Liu3, Libin Sun2, Yixuan Wang1, Hui Li1, Weiwei Qi2* and Wensheng Qiu2* Abstract Background: Globally, the incidence and mortality rates of gastric cancer are high, and its poor prognosis is closely related to tumor recurrence and metastasis. Therefore, the molecular mechanisms associated with the migration and invasion of gastric cancer cells are important for gastric cancer treatment. Previously, TSPAN9 has been reported to inhibit gastric cancer cell migration; however, the underlying molecular mechanism remains unclear. Methods: Human gastric adenocarcinoma cell lines, SGC7901 and AGS, were cultured in vitro. TSPAN9 expression was determined by RT-PCR, western blot analysis, and immunohistochemistry in gastric cancer and tumor-adjacent tissues. Following the over-expression and knockdown of TSPAN9, wound healing and cell invasion assays were performed and EMT-related protein expression was evaluated to analyze the invasion and migration of gastric cancer cells. TSPAN9 expression and the invasion and metastasis of gastric cancer cells were observed by the functional assays following EMILIN1 over-expression. Results: Inhibiting TSPAN9 expression significantly promoted the migration and invasion of gastric cancer cells. In addition, immunofluorescence co-localization and co-immunoprecipitation analysis revealed closely related expression of EMILIN1 and TSPAN9. Moreover, EMILIN1 can synergistically boost the tumor suppressive effect of TSPAN9, which may be produced by promoting TSPAN9 expression. Conclusions: We have demonstrated that EMILIN1 induces anti-tumor effects by up-regulating TSPAN9 expression in gastric cancer.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Inactivation of EMILIN-1 by Proteolysis and Secretion in Small Extracellular Vesicles Favors Melanoma Progression and Metastasis
    International Journal of Molecular Sciences Article Inactivation of EMILIN-1 by Proteolysis and Secretion in Small Extracellular Vesicles Favors Melanoma Progression and Metastasis Ana Amor López 1, Marina S. Mazariegos 1, Alessandra Capuano 2 , Pilar Ximénez-Embún 3, Marta Hergueta-Redondo 1, Juan Ángel Recio 4 , Eva Muñoz 5,Fátima Al-Shahrour 6 , Javier Muñoz 3, Diego Megías 7, Roberto Doliana 2, Paola Spessotto 2 and Héctor Peinado 1,* 1 Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain; [email protected] (A.A.L.); [email protected] (M.S.M.); [email protected] (M.H.-R.) 2 Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Department of Advanced Cancer Research and Diagnostics, IRCCS, I-33081 Aviano, Italy; [email protected] (A.C.); [email protected] (R.D.); [email protected] (P.S.) 3 Proteomics Unit—ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; [email protected] (P.X.-E.); [email protected] (J.M.) 4 Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute VHIR-Vall d’Hebron Hospital Barcelona-UAB, 08035 Barcelona, Spain; [email protected] 5 Clinical Oncology Program, Vall d’Hebron Institute of Oncology-VHIO, Vall d’Hebron Hospital, Barcelona-UAB, 08035 Barcelona, Spain; [email protected] Citation: Amor López, A.; 6 Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Mazariegos, M.S.; Capuano, A.; 28029 Madrid, Spain; [email protected] Ximénez-Embún, P.; Hergueta- 7 Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Redondo, M.; Recio, J.Á.; Muñoz, E.; 28029 Madrid, Spain; [email protected] Al-Shahrour, F.; Muñoz, J.; Megías, D.; * Correspondence: [email protected] et al.
    [Show full text]
  • Nephronectin As a Matrix Effector in Cancer
    cancers Review Nephronectin as a Matrix Effector in Cancer Synnøve Norvoll Magnussen 1,* , Jimita Toraskar 2,3 , Elin Hadler-Olsen 1,4, Tonje S. Steigedal 2,3 and Gunbjørg Svineng 1 1 Department of Medical Biology, Faculty of Health Sciences, UiT—The Arctic University of Norway, 9037 Tromsø, Norway; [email protected] (E.H.-O.); [email protected] (G.S.) 2 Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; [email protected] (J.T.); [email protected] (T.S.S.) 3 Cancer Clinic, St. Olavs Hospital HF, 7006 Trondheim, Norway 4 The Public Dental Health Service Competence Center of Northern Norway, 9271 Tromsø, Norway * Correspondence: [email protected] Simple Summary: The extracellular matrix provides an important scaffold for cells and tissues of multicellular organisms. The scaffold not only provides a secure anchorage point, but also functions as a reservoir for signalling molecules, sequestered and released when necessary. A dysregulated extracellular matrix may therefore modulate cellular behaviour, as seen during cancer progression. The extracellular matrix protein nephronectin was discovered two decades ago and found to regulate important embryonic developmental processes. Loss of either nephronectin or its receptor, integrin α8β1, leads to underdeveloped kidneys. Recent findings show that nephronectin is also dysregulated in breast cancer and plays a role in promoting metastasis. To enable therapeutic intervention, it is important to fully understand the role of nephronectin and its receptors in cancer progression. In Citation: Magnussen, S.N.; this review, we summarise the literature on nephronectin, analyse the structure and domain-related Toraskar, J.; Hadler-Olsen, E.; functions of nephronectin and link these functions to potential roles in cancer progression.
    [Show full text]