Proteomic Analyses of ECM During Pancreatic Ductal Adenocarcinoma Progression Reveal Different Contributions by Tumor and Stromal Cells
Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells Chenxi Tiana, Karl R. Clauserb,1, Daniel Öhlundc,d,e,1, Steffen Rickelta, Ying Huanga, Mala Guptaf, D. R. Manib, Steven A. Carrb, David A. Tuvesonc, and Richard O. Hynesa,g,2 aKoch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; bBroad Institute of MIT and Harvard, Cambridge, MA 02142; cCold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; dDepartment of Radiation Sciences, Umeå University, 901 87 Umeå, Sweden; eWallenberg Centre for Molecular Medicine, Umeå University, 901 85 Umeå, Sweden; fNew York University Winthrop Hospital, Mineola, NY 11501; and gHoward Hughes Medical Institute, Chevy Chase, MD 20815 Contributed by Richard O. Hynes, August 6, 2019 (sent for review May 28, 2019; reviewed by Wilhelm Haas and Lynn Matrisian) Pancreatic ductal adenocarcinoma (PDAC) has prominent extracellular hand, a phase 2 clinical trial of PEGPH20 showed improvement in matrix (ECM) that compromises treatments yet cannot be nonselec- progression-free survival of HA-high patients (10). Together, these tively disrupted without adverse consequences. ECM of PDAC, despite clinical findings suggest that a more detailed understanding of the recognition of its importance, has not been comprehensively stromal components could provide potential biomarkers for patient studied in patients. In this study, we used quantitative mass spec- stratification, and targets for more focused interventions. trometry (MS)-based proteomics to characterize ECM proteins in Extracellular matrix (ECM), as a major component of PDAC normal pancreas and pancreatic intraepithelial neoplasia (PanIN)- and stroma, provides both biophysical and biochemical cues that reg- PDAC-bearing pancreas from both human patients and mouse genetic ulate malignant cell behavior.
[Show full text]