A Dwindling Resource of the Desert Southwest

Total Page:16

File Type:pdf, Size:1020Kb

A Dwindling Resource of the Desert Southwest This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. ~ United States W,}l D epartment of Native Fishes of Arid Lands: ~ Agriculture Forest Service A Dwindling Resource Rocky Mountain of the Desert Southwest Forest and Range Experiment Station Fort Collins, Colorado 80526 General Technical Report RM-206 Rinne, J ohn N.; Minckley, W. L. 1991. Native fishes of arid lands: a dwindling resource of the desert Southwest. Gen. Tech. Rep. RM-206. Ft. Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 45 p. Includes color photos of 44 species of fishes, many published fo r the first time. Text describes aquatic systems in the mountains and deserts of the Southwest, the unique fishes they support, and habitats the fishes need. Front cover: Roundtail chub. Back cover: Aravaipa Creek, one of the best examples of native fish habitat remaining in Arizona. l USDA Forest Service General Technical Report RM-206 September 1991 Native Fishes of Arid Lands: A D-windling Resource of the Desert South-west Photographs by John N. Rinne Rocky Mountain Forest and Range Experiment Station 1 Tempe, Arizona Text by W. L. Minckley Arizona State University Tempe, Arizona 1Headquiuters in Fort Collins, Colorado, in cooperation with Colorado State University. The Bureau of Reclamation, USDI, helped finance the printing of this publication. Preface The goal is to advertise these unique, threatened and endangered fishes, and try to increase public Native freshwater fishes of the desert Southwest awareness of their plight. Knowledge of how these are disappearing. Fishes obviously require water, animals look and live, along with general information scarce in the past in this vast arid zone, and even on their status, may contribute to their perpetuation. more so now with burgeoning human populations. A list of technical literature on fishes of the region, As a result, this relatively small, special group of their basic biology, and the imperiled status of the animals has fallen on hard times. entire aquatic fauna is provided as Appendix I. Native freshwater fishes have received little Use of terms that refer to the conservation status attention from resource managers, or for that matter of various species follows that of the International the public, simply because they tend to be unfamil­ Committee on Endangered Species of the American iar. Most people do not recognize the differences Fisheries Society. "Endangered" fishes are those in between different species of fishes, or even that danger of extinction throughout all or a significant different species of certain groups exist. Common portion of their ranges. "Threatened" species are names are confusing in fishes, since the term likely to be endangered within the foreseeable future. "minnow" means a little fish to almost anyone, and Fishes of "special concern" may become threatened "sucker" is often used in a derogatory sense, or endangered by minor disturbances, or those which referring to a species that feeds on other than require additional information to determine their ''healthy'·· foods accumulated on the bottom. status. Scientific names are not included in text or Actually, both minnows and suckers are each figure captions in an attempt to make the separate families, the Cyprinidae and Catostomidae, presentation more readable. Both common and that make up a large proportion of the fishes native scientific names of fishes mentioned in text are to western North America. Some minnows get big, provided in Appendix II. and most suckers feed on live foods such as algae and mayflies, just like other stream fishes. Recognizing the problems of unfamiliarity and Acknowledgments difficulties of identification, Rinne began to accumulate photographs of native fishes in the Permits for collecting, photographing, and 1970s. Efforts included development of a special otherwise dealing with native western fishes were chamber where fish could be kept alive and well granted by the States of Arizona, Nevada, and New during photography, and emphasis was on natural Mexico, and for threatened and endangered species, colors of living individuals, to illustrate how these by the U.S. Fish and Wildlife Service. Work in animals actually look in nature. Photographs were Mexico was under permits issued through the chosen to illustrate not only their various body courtesy of the Mexican government. The Defenders shapes, but also their functional features such as of Wildlife and Nature Conservancy were especially breeding color and morphologic variation-some of helpful in allowing access to the Aravaipa Canyon the more dynamic aspects of their existence. As Preserve. Uncredited photographs were taken permitted by other assignments, he traveled to specifically for this work. Photographs provided by obtain photographs throughout southwestern United others-B. D. DeMarais, S. G. Fisher, D. A. and]. States and northwestern Mexico. Acceptable R. Hendrickson, B. L. Jensen,]. E. Johnson, W. G. photographs accumulated slowly. Some were Kepner, G. C. Kobetich, G. Mueller, R. D. Ohmart, published elsewhere to further other research efforts; R. Todd, and the U.S. Bureau of Reclamation-are others appear here for the first time. The present credited in the figure captions; Figure 63 is report includes photographs of 46 species of fishes, reproduced by permission from Arizona Game and some of the places in which they live, and of some Fish Department. Forest Service personnel who past and present conditions of regional aquatic provided able and substantial assistance with the habitats. project included Marty Jakie and Scott Belfit. Many The text by Minckley draws upon his experience others helped, and all are due our thanks. of mor~ than 30 years of research on desert aquatic The text was originally prepared while Minckley systems and fishes. It emphasizes historic aspects of was on an Interagency Personnel Agreement Act rivers and springs in the West-where they are, appointment between the U.S. Fish and Wildlife when they formed, and how they work. Treatments Service and Arizona State University. B. L. Jensen of fishes include comments on life-history traits, and his staff at Dexter National Fish Hatchery, species uniqueness, and historic and present values, Dexter, New Mexico, provided assistance, support, along with their roles in natural aquatic and encouragement that contributed substantially to communities. the final product. Contents Page Preface ................................................. Acknowledgments ........................................ Introduction . 1 The Setting . -. 1 Origins of the Desertlands . 1 Water, Aquatic Habitats, and the Impacts of Humans . 2 Natural Aquatic Habitats and Native Fishes . 6 Creeks in the Pines . 6 High Mountain Trouts . 7 Other Species .........................-. 10 Streams at Intermediate Elevations . 11 An Historic Perspective . 11 Ecology of Present Systems . 13 Fishes of Intermediate Elevations . 14 Low Desert Streams . 2 7 Low Desert, Riverine Fish Communities . 29 Marine Species . 36 Fishes of Desert Oases . 3 7 Discussion and Conclusions . 39 Appendix I. Selected References . 41 Appendix II. Common and Scientific Names . 43 1.17" 115° 31° PACIFIC OCEAN KEY 0 City ; Reservoir tfJ Ory Lake ~ Estuarine Marsh 1 Njolural Lake ,,. 113° Figure 1 . The region termed the American Southwest encompasses parts or all of the Mexican states of Baja California Norte, Baja California Sur, Chihuahua, Coahuila, and Sonora, and Arizona, California, Colorado, Texas, New Mexico, Nevada, and Utah in the United States. Native Fishes tn Arid Lands: A Dwindling Resource of the Desert Southwest Photographs by John N. Rinne Text by W. L. Minckley INTRODUCTION THE SETTING The American Southwest is usually defined to Elevations in the region vary from sea level to include all or part of 12 States in western United more than 3600 m. Precipitation is equally variable, States and Mexico (Fig. 1), much of which is averaging less than 5. 0 em per year in the most lowland desert interrupted and diversified by isolated severe desert, to more than 128 em at the higher mountains and plateaus. Evaporation exceeds elevations. Most of the vegetation zones of North precipitation so greatly that surface water should the­ America are represented, from patches of tundra on oretically not exist. Nonetheless, major rivers such as the highest peaks, downhill through extensive conifer the Colorado and Yaqui formerly collected sufficient forests then woodlands and grasslands, to end with water to flow all the way through the arid lowlands desertscrub on the basin floors. to the sea. The region is also hydrologically complex. Most Just a few decades ago, western streams swarmed major drainage basins are composites ·of once­ with fishes that had survived millennia of remarkable independent systems brought together by dustal geologic and climatic changes. They had adapted to movements or volcanic activity. Most of the Sonoran survive the special conditions in canyon-bound rivers Desert region, emphasized here, is characterized by that varied from raging torrents in flood to isolated through-flowing rivers passing from mount~i!J.S to the pools in drought. Some had specialized to withstand sea. Closed basins (Fig. 2), from which wat:r' escapes high summer temperatures and salts concentrated by only through evaporation or seepage, are common in evaporation in desert lakes and marshes. However,
Recommended publications
  • STORRE Veral Et Al. Tilapia Locomotor Activity .Pdf
    CIRCADIAN RHYTHMS OF LOCOMOTOR ACTIVITY IN THE NILE TILAPIA OREOCHROMIS NILOTICUS Luisa María Veraa, Louise Cairnsa, Francisco Javier Sánchez-Vázquezb, Hervé Migauda* a Reproduction and Genetics Group, Institute of Aquaculture, University of Stirling. Stirling, UK. b Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain. Running title: Circadian rhythms in tilapia *Corresponding author: Dr. Hervé Migaud Institute of Aquaculture, University of Stirling FK9 4LA, Stirling, UK Tel. 0044 1786 467886 Fax. 0044 1786 472133 E-mail: [email protected] 1 ABSTRACT The Nile tilapia behavioural rhythms were investigated to better characterize its circadian system. To do so, the locomotor activity patterns of both male and female tilapia reared under a 12: 12-h light-dark (LD) cycle were studied, as well as the existence of endogenous rhythmicity under free-running conditions (DD and 45-min LD pulses) in males. When exposed to an LD cycle, the daily pattern of activity differed between individuals: some fish were diurnal, some nocturnal and a few displayed an arrhythmic pattern. This variability would be typical of the plastic circadian system of fish and reproductive events clearly affected the behavioural rhythms of female tilapia, a mouthbrooder teleost species. Under DD, 50% (6 out of 12) of male fish showed circadian rhythms with an average period (tau) of 24.1 ± 0.2 h whereas under the 45- min LD pulses 58% (7 out of 12) of fish exhibited free-running activity rhythms and tau was 23.9 ± 0.5 h. However, interestingly in this case activity was always confined to the dark phase.
    [Show full text]
  • In the Weber River, Utah
    An International Periodical Promoting Conservation and Biodiversity Southwestern United States—Mexico—Central America Una Revista Internacional para Fomentar la Conservación y Biodiversidad El Suroeste de USA—México—Centroamérica STATUS AND STRUCTURE OF TWO POPULATIONS OF THE BLUEHEAD SUCKER (CATOSTOMUS DISCOBOLUS) IN THE WEBER RIVER, UTAH P. A ARON WEBBER,PAUL D. THOMPSON,* AND PHAEDRA BUDY Colorado River Fishery Project, United States Fish and Wildlife Service, 1380 South 2350 West, Vernal, UT 84078 (PAW) Utah Division of Wildlife Resources, 515 East 5300 South, Ogden, UT 84405 (PDT) United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, UT 8432 (PB) * Correspondent: [email protected] THE SOUTHWESTERN NATURALIST 57(3): 267–276 SEPTEMBER 2012 STATUS AND STRUCTURE OF TWO POPULATIONS OF THE BLUEHEAD SUCKER (CATOSTOMUS DISCOBOLUS) IN THE WEBER RIVER, UTAH P. A ARON WEBBER,PAUL D. THOMPSON,* AND PHAEDRA BUDY Colorado River Fishery Project, United States Fish and Wildlife Service, 1380 South 2350 West, Vernal, UT 84078 (PAW) Utah Division of Wildlife Resources, 515 East 5300 South, Ogden, UT 84405 (PDT) United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, UT 8432 (PB) * Correspondent: [email protected] ABSTRACT—We compared two populations of the bluehead sucker (Catostomus discobolus) during 2007–2009 in the Weber River, Davis, Summit, and Weber counties, Utah. We estimated 225 and 546 individuals in these populations. Based on recaptured, PIT-tagged fish, annual survival of adults (202–575 mm total length) was high (77%); however, our top model indicated mortality increased with size (i.e., senescence).
    [Show full text]
  • Growth of the Shortnose Mojarra Diapterus Brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific
    Growth of the Shortnose Mojarra Diapterus brevirostris (Perciformes: Gerreidae) in Central Mexican Pacific Crecimiento de la malacapa Diapterus brevirostris (Perciformes: Gerreidae) en el Pacífico centro mexicano Manuel Gallardo-Cabello,1 Elaine Espino-Barr,2* Esther Guadalupe Cabral-Solís,2 Arturo García-Boa2 y Marcos Puente-Gómez2 1 Instituto de Ciencias del Mar y Limnología Universidad Nacional Autónoma de México Av. Ciudad Universitaria 3000, Col. Copilco México, D. F. (C. P. 04360). 2 INAPESCA, CRIP-Manzanillo Playa Ventanas s/n Manzanillo, Colima (C.P. 28200). Tel: (314) 332 3750 *Corresponding author: [email protected] Abstract Resumen Samples of Shortnose Mojarra Diapterus brevi- Se obtuvieron muestras y datos morfométricos rostris were obtained from the commercial catch de 394 individuos de la malacapa Diapterus from April 2010 to July 2012, morphometric brevirostris, de la captura comercial entre abril data of 394 individuals were registered. The de 2010 y julio de 2012. El estudio del creci- growth study entailed two methods: length fre- miento se realizó por dos métodos: análisis de quency analysis and study of sagittae and as- frecuencia de longitud y el estudio de los otoli- terisci otoliths. Both methods identified six age tos sagittae y asteriscus. Ambos métodos iden- groups. Growth parameters of von Bertalanffy’s tificaron seis grupos de edad. Los parámetros equation were determined by Ford-Walford and de crecimiento de la ecuación de von Berta- Gulland methods and by ELEFAN routine ad- lanffy se determinaron con el método de Ford- justment. Both methods gave the same results: Walford y Gulland y por rutina ELEFAN. L∞= 48.61 cm, K= 0.135, to= -0.696.
    [Show full text]
  • Histochemical Characteristics of Macrophages of Butterfly Splitfin Ameca Splendens
    e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 1 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-1.05 Histochemical Characteristics of Macrophages of Butterfly Splitfin Ameca splendens Ewelina LATOSZEK, Maciej KAMASZEWSKI , Konrad MILCZAREK, Kamila PUPPEL, Hubert SZUDROWICZ, Antoni ADAMSKI, Pawe³ BURY-BURZYMSKI, and Teresa OSTASZEWSKA Accepted March 18, 2019 Published online March 29, 2019 Issue online March 29, 2019 Original article LATOSZEK E., KAMASZEWSKI M., MILCZAREK K., PUPPEL K., SZUDROWICZ H., ADAMSKI A., BURY-BURZYMSKI P., OSTASZEWSKA T. 2019. Histochemical characteristics of macrophages of butterfly splitfin Ameca splendens. Folia Biologica (Kraków) 67: 53-60. The butterfly splitfin (Ameca splendens) is a fish species that belongs to the Goodeidae family. The biology of this species, which is today at risk of extinction in its natural habitats, has not been fully explored. The objective of the present study was to characterize melanomacrophages (MMs) and the melanomacrophage centers (MMCs) that they form, associated with the immunological system of butterfly splitfin. Butterfly splitfin is a potential new model species with a placenta for scientific research. In addition, knowledge about the location and characteristics of MMCs will allow the effective development of a conservation strategy for this species and monitoring of the natural environment. The results of histological analyses show that the immune system of fish aged 1 dph was completely developed. Single MMs were observed in hepatic sinusoids and in head kidney and their agglomerations were noticed in the exocrine pancreas and in the spleen. Hemosiderin was detected in single MMs in the head kidney of fish aged 1 dph, and in the spleen, exocrine pancreas and liver of older fish.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Sonora Sucker
    scientific name common name Catostomus insignis Sonora sucker Bison code 010520 ______________________________________________________________ Official status Endemism ________________________ State AZ: threatened Colorado River Basin _______________________ Status/threats Dams, diversions, groundwater pumping and introduced species Distribution The species is widespread and abundant in the Gila and Bill Williams river drainages in Arizona and the Gila and San Francisco drainages in southwestern New Mexico. The species is widespread and abundant in the Verde and Gila headwaters. Habitat Streams and rivers from 300 to 3000 m in elevation, primarily in pool habitats. Pool habitats over sand gravel substrates. Life history and ecology Can attain a size of 0.8 m and a weight of greater than 2.0 kg. Used as food by early, primitive human populations. Food habits vary with availability. In one stream, Aravaipa Creek, it is principally a carnivore, whereas elsewhere in pool habitats diet consists of plant debris, mud, and algae. Observed to "suck" cottonwood seeds at surface as is common for the common carp. Young often feed in large schools at stream margins on micro-crustaceans, protozoans and other animal and plant groups. Breeding Similar to most slim-bodied suckers, the species spawns in smaller streams over gravel substrates. Males darken in color and often display extreme tuberculation. Males &(usually 2) flank a single, larger female. Gametes are emitted with considerable to extreme substrate agitation and fall into gravel interstices. Cleaning of gravels occurs much as reported for salmonid species. Key Habitat Components: pools with sand-gravel substrates for adults and shallow, low velocity riffles and backwaters for young Breeding season Protracted, from as early as January to February at low elevations to as late as July.
    [Show full text]
  • Roundtail Chub (Gila Robusta Robusta): a Technical Conservation Assessment
    Roundtail Chub (Gila robusta robusta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 3, 2005 David E. Rees, Jonathan A. Ptacek, and William J. Miller Miller Ecological Consultants, Inc. 1113 Stoney Hill Drive, Suite A Fort Collins, Colorado 80525-1275 Peer Review Administered by American Fisheries Society Rees, D.E., J.A. Ptacek, and W.J. Miller. (2005, May 3). Roundtail Chub (Gila robusta robusta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/roundtailchub.pdf [date of access]. ACKNOWLEDGMENTS We would like to thank those people who promoted, assisted, and supported this species assessment for the Region 2 USDA Forest Service. Ryan Carr and Kellie Richardson conducted preliminary literature reviews and were valuable in the determination of important or usable literature. Laura Hillger provided assistance with report preparation and dissemination. Numerous individuals from Region 2 national forests were willing to discuss the status and management of this species. Thanks go to Greg Eaglin (Medicine Bow National Forest), Dave Gerhardt (San Juan National Forest), Kathy Foster (Routt National Forest), Clay Spease and Chris James (Grand Mesa, Uncompahgre, and Gunnison National Forest), Christine Hirsch (White River National Forest), as well as Gary Patton and Joy Bartlett from the Regional Office. Dan Brauh, Lory Martin, Tom Nesler, Kevin Rogers, and Allen Zincush, all of the Colorado Division of Wildlife, provided information on species distribution, management, and current regulations. AUTHORS’ BIOGRAPHIES David E. Rees studied fishery biology, aquatic ecology, and ecotoxicology at Colorado State University where he received his B.S.
    [Show full text]
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Springs of California
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOB WATER- SUPPLY PAPER 338 SPRINGS OF CALIFORNIA BY GEKALD A. WARING WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. Page. lntroduction by W. C. Mendenhall ... .. ................................... 5 Physical features of California ...... ....... .. .. ... .. ....... .............. 7 Natural divisions ................... ... .. ........................... 7 Coast Ranges ..................................... ....•.......... _._._ 7 11 ~~:~~::!:: :~~e:_-_-_·.-.·.·: ~::::::::::::::::::::::::::::::::::: ::::: ::: 12 Sierra Nevada .................... .................................... 12 Southeastern desert ......................... ............. .. ..... ... 13 Faults ..... ....... ... ................ ·.. : ..... ................ ..... 14 Natural waters ................................ _.......................... 15 Use of terms "mineral water" and ''pure water" ............... : .·...... 15 ,,uneral analysis of water ................................ .. ... ........ 15 Source and amount of substances in water ................. ............. 17 Degree of concentration of natural waters ........................ ..· .... 21 Properties of mineral waters . ................... ...... _. _.. .. _... _....• 22 Temperature of natural waters ... : ....................... _.. _..... .... : . 24 Classification of mineral waters ............ .......... .. .. _. .. _......... _ 25 Therapeutic value of waters .................................... ... ... 26 Analyses
    [Show full text]
  • Biological Aspects of Longfin Mojarra (Pentaprion Longimanus, Cantor 1849) in North Coast of Central Java, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 2, March 2018 E-ISSN: 2085-4722 Pages: 733-739 DOI: 10.13057/biodiv/d190248 Biological aspects of Longfin Mojarra (Pentaprion longimanus, Cantor 1849) in north coast of Central Java, Indonesia DIAN OKTAVIANI1,♥, RIA FAIZAH1, DUTO NUGROHO1,2 1Research Centre for Fisheries, Agency for Research and Human Resource of Marine and Fisheries. BRSDM KP II Building. Jl. Pasir Putih II, Ancol Timur, Jakarta 14430, Indonesia. Tel.: +62-21-64700928, Fax.: 62-21-64700929, ♥email: [email protected] 2Doctor Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Jl. Lingkar Kampus Raya, Kampus UI, Gedung E Lt. 2, Depok 16424, West Java, Indonesia. Manuscript received: 1 July 2017. Revision accepted: 29 March 2018. Abstract. Oktaviani D, Faizah R, Nugroho D. 2018. Biological aspects of Longfin Mojarra (Pentaprion longimanus, Cantor 1849) in north coast of Central Java, Indonesia. Biodiversitas 19: 683-689. Longfin Mojarra (Pentaprion longimanus) locally named as rengganis, is a demersal fish species that is commonly caught in Scottish seine fisheries off the north coast of Java. The fisheries are in heavily harvest level since decades. The aim of this study was to observe the biological aspects of this species. Observations were made between August 2014-July 2015 from Tegal fishing port, western part of north coast central Java. General life-history parameters were measured, i.e., monthly length frequency for 1876 fishes, among them 573 specimens were observed for length-weight relationship, including 541 specimens for sex ratio and maturity stages. Fulton index, Gonadosomatic index, sex ratio and estimated length at first mature were analyzed.
    [Show full text]
  • Characterization and Phylogenetic Analysis of Complete Mitochondrial MARK Genomes for Two Desert Cyprinodontoid fishes, Empetrichthys Latos and Crenichthys Baileyi
    Gene 626 (2017) 163–172 Contents lists available at ScienceDirect Gene journal homepage: www.elsevier.com/locate/gene Research paper Characterization and phylogenetic analysis of complete mitochondrial MARK genomes for two desert cyprinodontoid fishes, Empetrichthys latos and Crenichthys baileyi ⁎ Miguel Jimeneza,b, Shawn C. Goodchildc,d, Craig A. Stockwellc, Sean C. Lemab, a Alan Hancock College, Santa Maria, CA, USA b Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA c Department of Biological Sciences, North Dakota State University, Fargo, ND, USA d Environmental & Conservation Sciences Graduate Program, North Dakota State University, Fargo, ND, USA ARTICLE INFO ABSTRACT Keywords: The Pahrump poolfish (Empetrichthys latos) and White River springfish (Crenichthys baileyi) are small-bodied Cyprinodontiformes teleost fishes (order Cyprinodontiformes) endemic to the arid Great Basin and Mojave Desert regions of western Goodeidae North America. These taxa survive as small, isolated populations in remote streams and springs and evolved to mtDNA tolerate extreme conditions of high temperature and low dissolved oxygen. Both species have experienced severe Conservation population declines over the last 50–60 years that led to some subspecies being categorized with protected status Pahrump poolfish under the U.S. Endangered Species Act. Here we report the first sequencing of the complete mitochondrial DNA White River springfish Endangered species genomes for both E. l. latos and the moapae subspecies of C. baileyi. Complete mitogenomes of 16,546 bp Fish nucleotides were obtained from two E. l. latos individuals collected from introduced populations at Spring Desert Mountain Ranch State Park and Shoshone Ponds Natural Area, Nevada, USA, while a single mitogenome of 16,537 bp was sequenced for C.
    [Show full text]
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]