The Rise of Sustainability in Public Jellyfish Displays: Achieving Surplus and Expanding Possibilities M

Total Page:16

File Type:pdf, Size:1020Kb

The Rise of Sustainability in Public Jellyfish Displays: Achieving Surplus and Expanding Possibilities M The Rise of Sustainability in Public Jellyfish Displays: Achieving Surplus and Expanding Possibilities M. Schaadt1, Widmer, C. 2, Howard, M.J. 3, Upton, B.3, Matsushige, L. 4, Levesque, V. 4 1 Cabrillo Marine Aquarium, San Pedro, CA, USA; 2 University of St. Andrews, Scotland, UK; 3Monterey Bay Aquarium, Monterey, CA, USA; 4 Birch Aquarium at Scripps, La Jolla, CA, USA. 1 Jellyfish in Exhibits Jellyfish species have become common animals to display in aquariums and zoos all over the world. Live exhibits of jellyfish have provided examples of plankton, a heretofore underrepresented group of aquatic organisms in public displays. As the variety of jellyfish species displayed has increased so has their popularity with visitors. Further indication of the interest in live jellyfish exhibits is the number of large temporary exhibits that have opened over the years. Many temporary exhibits have resulted in aquariums learning new culturing techniques which become permanent standard operating procedures and are incorporated into permanent exhibits. E A D C B Black sea nettle Chrysaora achlyos Cabrillo Marine Aquarium General life cycle of jellyfish belonging to the class Scyphozoa. Mature moon jellies, Culture Start Primer – Scyphozoans –Monterey Bay Aquarium Aurelia aurita (A), release tiny free swimming planulae larvae (B) that settle and 1) Snip a 1cm2 piece of gonad from about 6 individuals (to identify gender, take a tiny bit from each sample and squash metamorphose into scyphistomae (C). When environmental conditions change scyphistomae mount. At 400x one should see motile sperm or metamorphose into medusae producing polyps known as strobilae (D), that develop and eggs). 2) Place samples in an 8" glass crystallization dish (or equivalent) filled release ephyrae (E) which eventually grow into mature medusae (A). with highly filtered water (5 micron or less). Bunch them together to facilitate ‘happy encounters’. 3) Leave overnight in water bath. 2 4) Check for planulae next morning (there should be plenty if gonads are ripe). Culture and Sharing 5) Leaving gonad tissue undisturbed, siphon off most of the water into a larger 'settlement' container with lots of settling plate Aquariums and zoos have intensified efforts to culture jellyfish for displays and to share surplus jellyfish with options (floating, hanging, on bottom, etc). 6) Refill gonad dish with filtered water, add a small portion of filtered other institutions. Recent manuals and books have been published to help aquarium professionals give the water to settlement container. best care to jellyfish in live exhibits. From a sustainability point of view, more productive culturing efforts have 7) Repeat steps 4-6 the next 3 days. resulted in greater availability for cultured specimens to be shared among public institutions. This often Planulae settlement for many scyphozoans will occur in 24-48 hours, and primary tentacles should be observed by 72 hours. Crown jelly results in more robust and densely populated exhibits while lessening impacts to wild stock. Place on flow through and feed enriched rotifers in 1 Cephea cephea week. Monterey Bay Aquarium Communication 3 Communication amongst aquariums, zoos and the scientific community, who also sometimes rely on using cultured jellyfish for research, has become easier with listserves dedicated to jellyfish husbandry and biology. 4 Jellies Directory A listing of folks working with gelatinous zooplankton at public aquariums & research labs Anyone wishing to be included should contact Mike Schaadt, Cabrillo Marine Aquarium Version 6/26/12 Jellyfish and Climate Change (S) = scyphozoan medusa (Cu) = cubomedusa (H) = hydrozoan medusa (Si) = siphonophore (C) = ctenophore Note: spelling of scientific names is based upon: Jellyfish ecology has implications to climate change and Kramp, P.L. 1952. Synopsis of the medusae of the world. J. Mar. Biol. Ass. U.K. 40: 1-469. other timely conservation messages which are subjects Russell, F. S. 1964. The medusae of the British Isles. II. Pelagic Scyphozoa. Cambridge Univ. Press, London, 284 pp. Jellyfish Care Manual Mike Schaadt Cabrillo Marine Aquarium Director incorporated into many jellyfish exhibits. 3720 Stephen White Dr. San Pedro CA 90731 Ph: 310-548-2995 FAX: 310-548-2649 [email protected] Display: Aurelia aurita (S), Aurelia labiata (S), Chrysaora colorata (S), Chrysaora fuscescens (S), Chrysaora achlyos (S), Polyorchis penicillatus (H) [seasonal], Aequorea victoria (H), Carybdea marsupialis (Cu) [seasonal] Culture: Aurelia aurita (S), Aurelia labiata (S), Chrysaora colorata (S), Chrysaora achlyos (S), Chrysaora fuscescens (S) Tanks: planktonkreisel, pseudokreisels, modified box Bruce Upton Monterey Bay Aquarium Aquarist Michael Howard [email protected] Wyatt Patry [email protected] 886 Cannery Row Monterey CA 93940 Ph: 831-648-7936 FAX: 831-644-7597 [email protected] 5 Display: Catostylus mosaicus(S), Chrysaora quinquecirrha(S), Chrysaora achlyos(S), Chrysaora melanaster(S), Cassiopea xamachana(S), Mastigias papua(S), Polyorchis spp (H), Olindias formosa (H), Halimedusa typus (H), Mnemiopsis leidyi(C), Tripedalia cystophora (Cu), Pleurobrachia bachei (C), Bolinopsis infundibulum (C), Leucothea pulchra (C), Beroe spp (C) Future Directions Jellyfish Care Manual Culture: Catostylus mosaicus(S), Chrysaora achlyos(S), Chrysaora melanaster(S), Chrysaora quinquecirrha (S), Future direction for sustainability of efforts in displaying Created by the Cassiopea xamachana(S), Mastigias papua(S), Chrysaora fuscescens (S), Chrysaora colorata (S), Phacellophora camtschatica (S), Cyanea spp (S), Aurelia spp (S), Cotylorhiza tuberculata (S), Stomolophus meleagris (S), jellyfish to the public should focus on improving: AZA Aquatic Invertebrate Taxon Advisory Group Sanderia malayensis (S), Mastigias papua (S), Cephea cephea (S), Netrostoma setouchianum (S), Aurelia in Association with the aurita (S) (Hawaii), Phyllorhiza punctata (S), Aequorea spp (H), Eutonina indicans (H), Mitrocoma cellularia (H), understanding of life histories, nutrition, veterinary care, Halimedusa typus (H), Tripedalia cystophora (Cu) AZA Animal Welfare Committee Tanks: planktonkreisels, pseudokreisels, modified boxes culture techniques, display tank and culturing facility Leslee Matsushige Birch Aquarium at Scripps Aquarist designs and communication amongst institutions. In Vincent Levesque addition, more timely conservation messages should be Jellyfish Listserve 9500 Gilman Dr. -0207 La Jolla CA 92093-0207 incorporated in exhibits such as how jellyfish blooms Jellyfish -- Jellyfish OPEN About Jellyfish English (USA) THIS LIST IS OPEN TO NEW SUBSCRIBERS affect the sustainable management of fisheries. To see the collection of prior postings to the list, visit the Jellyfish Archives. Using JellyfishTo post a message to all the list members, send email to [email protected]. You can subscribe to the list, or change your existing subscription, in the sections below. Cnidaria listserve Subscribing to JellyfishSubscribe to Jellyfish by filling out the following form. moderated by Dr. R. Steele at University of California, Irvine, USA You will be notified of the moderator's decision by email. This is also a private list, which means that http://maillists.uci.edu/mailman/listinfo/cnidaria the list of members is not available to non-members. Your email address: Your name (optional): You may enter a privacy password below. Jellyfish Subscribers(The subscribers list is only available to the list members.) Enter your address and password to visit the subscribers list: Take Home Messages 6 ○ Jellyfish exhibits have been and continue to be popular with visitors. ○ Most aquariums that culture jellyfish for their displays also share surplus with other aquariums. ○ Communication amongst jellyfish specialists at aquariums has been fruitful and more is needed in the future. Funding gratefully provided by ○ Jellyfish exhibits can include climate change discussions. FRIENDS of Cabrillo Marine Aquarium ○ Sustainability of jellyfish exhibits can be strengthened in the future by new advances in husbandry, culture and communication. Correspondence: Mike Schaadt, [email protected].
Recommended publications
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • Treatment of Lion´S Mane Jellyfish Stings- Hot Water Immersion Versus Topical Corticosteroids
    THE SAHLGRENSKA ACADEMY Treatment of Lion´s Mane jellyfish stings- hot water immersion versus topical corticosteroids Degree Project in Medicine Anna Nordesjö Programme in Medicine Gothenburg, Sweden 2016 Supervisor: Kai Knudsen Department of Anesthesia and Intensive Care Medicine 1 CONTENTS Abstract ................................................................................................................................................... 3 Introduction ............................................................................................................................................. 3 Background ............................................................................................................................................. 4 Jellyfish ............................................................................................................................................... 4 Anatomy .......................................................................................................................................... 4 Nematocysts .................................................................................................................................... 4 Jellyfish in Scandinavian waters ......................................................................................................... 5 Lion’s Mane jellyfish, Cyanea capillata .......................................................................................... 5 Moon jelly, Aurelia aurita ..............................................................................................................
    [Show full text]
  • Pdf) and Their Values Are Plotted Against Temperature in Fig
    Vol. 510: 255–263, 2014 MARINE ECOLOGY PROGRESS SERIES Published September 9 doi: 10.3354/meps10799 Mar Ecol Prog Ser Contribution to the Theme Section ‘Jellyfish blooms and ecological interactions’ FREEREE ACCESSCCESS Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita Zhilu Fu1, Masashi Shibata1, Ryosuke Makabe2, Hideki Ikeda1, Shin-ichi Uye1,* 1Graduate School of Biosphere Science, Hiroshima University, 4-4 Kagamiyama 1 Chome, Higashi-Hiroshima 739−8528, Japan 2Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki 986-8580, Japan ABSTRACT: Scyphozoan ephyrae need to start feeding before their endogenous nutritional reserves run out, and the success of feeding and growth is crucial to their recruitment into the medusa population. To evaluate starvation resistance in first-feeding ephyrae of the moon jellyfish Aurelia aurita s.l., we determined their point of no return (PNR50), i.e. days of starvation after which 50% of ephyrae die even if they then feed. PNR50 values were 33.8, 38.4 and 58.6 d at 15, 12 and 9°C, respectively. Before reaching PNR50, the ephyrae showed significant body size reduc- tion: ca. 30 and 50% decrease in disc diameter and carbon content, respectively. These PNR50 val- ues are nearly 1 order of magnitude longer than those of larval marine molluscs, crustaceans and fishes, which is attributable to the ephyra’s extremely low metabolic (i.e. respiration) rate relative to its copious carbon reserves. Such a strong endurance under prolonged starvation is likely an adaptive strategy for A. aurita ephyrae, the release of which is programmed to occur during the annual period of lowest temperatures, allowing them to cope with the concomitant seasonal food scarcity.
    [Show full text]
  • A Review of Behavioural Observations on Aurelia Sp. Jellyfish
    Neuroscience and Biobehavioral Reviews 35 (2011) 474–482 Contents lists available at ScienceDirect Neuroscience and Biobehavioral Reviews journal homepage: www.elsevier.com/locate/neubiorev Review What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish David J. Albert Roscoe Bay Marine Biology Laboratory, 4534 W 3rd Avenue, Vancouver, British Columbia, Canada V6R 1N2 article info abstract Article history: Aurelia sp. (scyphozoa; Moon Jellies) are one of the most common and widely distributed species of jelly- Received 14 March 2010 fish. Their behaviours include swimming up in response to somatosensory stimulation, swimming down Received in revised form 30 May 2010 in response to low salinity, diving in response to turbulence, avoiding rock walls, forming aggregations, Accepted 3 June 2010 and horizontal directional swimming. These are not simple reflexes. They are species typical behaviours involving sequences of movements that are adjusted in response to the requirements of the situation and Keywords: that require sensory feedback during their execution. They require the existence of specialized sensory Aurelia sp receptors. The central nervous system of Aurelia sp. coordinates motor responses with sensory feedback, Behaviour Nervous system maintains a response long after the eliciting stimulus has disappeared, changes behaviour in response Sensory receptors to sensory input from specialized receptors or from patterns of sensory input, organizes somatosensory Scyphozoa input in a way that allows stimulus input from many parts of the body to elicit a similar response, and coordinates responding when stimuli are tending to elicit more than one response. While entirely differ- ent from that of most animals, the nervous system of Aurelia sp.
    [Show full text]
  • View, Browse, And/Or Download Material for Temporary Copying Purposes Only, Provided These Uses Are for Noncommercial Personal Purposes
    )ORULGD6WDWH8QLYHUVLW\/LEUDULHV 2018 Diagnosis, Prognosis, and Management of Jellyfish Swarms Laura Prieto Terms and Conditions: Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or in part, without prior written permission from GODAE OceanView. Follow this and additional works at DigiNole: FSU's Digital Repository. For more information, please contact [email protected] CHAPTER 28 Diagnosis, Prognosis, and Management of Jellyfish Swarms Laura Prieto Ecosystem Oceanography Group, Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Cádiz, Spain Jellyfish includes creatures that are mostly constituted by water and have a gelatinous consistency. In this chapter, after providing a biological description of these organisms, the scales of variability associated to their life cycle and framing their dynamics in the context of the climate change, I review the diverse initiatives and management of coastal jellyfish swarms. Jellyfish swarms have relevant social and economic implications; however, systematic and periodic data of jellyfish occurrences along beaches is sparse. This data would help us to understand the inter-annual variability of the episodes of high jellyfish abundances and
    [Show full text]
  • Aurelia Aurita) and Evaluation of Their Tissues Using NMR-Based Metabolomics
    ABSTRACT DOERR, MARY. The Development of Euthanasia Techniques for Moon Jellyfish (Aurelia aurita) and Evaluation of their Tissues Using NMR-Based Metabolomics. (Under the direction of Dr. Michael K Stoskopf). Wild jellyfish are known to have significant impacts on coastal food web ecology and water quality. Advances in aquarium engineering and captive breeding capabilities have increased the availability of these delicate invertebrates for research purposes, although challenges persist in the management of water quality, nutrition, and disease. Moon jellyfish (Aurelia aurita) are an ideal species for novel investigations into jellyfish physiology due to their cosmopolitan nature, and their shared traits with most species of scyphozoan jellyfish. Metabolomics, the study of the small molecules involved in the pathways of cellular metabolism, is a rapidly growing area of study with applications in medicine, disease management, and marine systems biology. NMR spectroscopy allows for the evaluation of the full spectrum of metabolites from any tissue or biofluid and has the additional advantage of allowing for the determination of molecular structure from these samples, which can lead to the discovery of new biomolecules. Using NMR-based metabolomics to investigate jellyfish has the potential to generate new insight into their physiology and to add to the existing knowledge base in the field of marine metabolomics. This research project first investigates suitable methods of euthanasia for moon jellyfish destined for NMR spectroscopy, and
    [Show full text]
  • Pelagia Benovici Sp. Nov. (Cnidaria, Scyphozoa): a New Jellyfish in the Mediterranean Sea
    Zootaxa 3794 (3): 455–468 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3794.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:3DBA821B-D43C-43E3-9E5D-8060AC2150C7 Pelagia benovici sp. nov. (Cnidaria, Scyphozoa): a new jellyfish in the Mediterranean Sea STEFANO PIRAINO1,2,5, GIORGIO AGLIERI1,2,5, LUIS MARTELL1, CARLOTTA MAZZOLDI3, VALENTINA MELLI3, GIACOMO MILISENDA1,2, SIMONETTA SCORRANO1,2 & FERDINANDO BOERO1, 2, 4 1Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy 2CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 3Dipartimento di Biologia e Stazione Idrobiologica Umberto D’Ancona, Chioggia, Università di Padova. 4 CNR – Istituto di Scienze Marine, Genova 5Corresponding authors: [email protected], [email protected] Abstract A bloom of an unknown semaestome jellyfish species was recorded in the North Adriatic Sea from September 2013 to early 2014. Morphological analysis of several specimens showed distinct differences from other known semaestome spe- cies in the Mediterranean Sea and unquestionably identified them as belonging to a new pelagiid species within genus Pelagia. The new species is morphologically distinct from P. noctiluca, currently the only recognized valid species in the genus, and from other doubtful Pelagia species recorded from other areas of the world. Molecular analyses of mitochon- drial cytochrome c oxidase subunit I (COI) and nuclear 28S ribosomal DNA genes corroborate its specific distinction from P. noctiluca and other pelagiid taxa, supporting the monophyly of Pelagiidae. Thus, we describe Pelagia benovici sp.
    [Show full text]
  • Biological Interactions Between Fish and Jellyfish in the Northwestern Mediterranean
    Biological interactions between fish and jellyfish in the northwestern Mediterranean Uxue Tilves Barcelona 2018 Biological interactions between fish and jellyfish in the northwestern Mediterranean Interacciones biológicas entre meduas y peces y sus implicaciones ecológicas en el Mediterráneo Noroccidental Uxue Tilves Matheu Memoria presentada para optar al grado de Doctor por la Universitat Politècnica de Catalunya (UPC), Programa de doctorado en Ciencias del Mar (RD 99/2011). Tesis realizada en el Institut de Ciències del Mar (CSIC). Directora: Dra. Ana Maria Sabatés Freijó (ICM-CSIC) Co-directora: Dra. Verónica Lorena Fuentes (ICM-CSIC) Tutor/Ponente: Dr. Manuel Espino Infantes (UPC) Barcelona This student has been supported by a pre-doctoral fellowship of the FPI program (Spanish Ministry of Economy and Competitiveness). The research carried out in the present study has been developed in the frame of the FISHJELLY project, CTM2010-18874 and CTM2015- 68543-R. Cover design by Laura López. Visual design by Eduardo Gil. Thesis contents THESIS CONTENTS Summary 9 General Introduction 11 Objectives and thesis outline 30 Digestion times and predation potentials of Pelagia noctiluca eating CHAPTER1 fish larvae and copepods in the NW Mediterranean Sea 33 Natural diet and predation impacts of Pelagia noctiluca on fish CHAPTER2 eggs and larvae in the NW Mediterranean 57 Trophic interactions of the jellyfish Pelagia noctiluca in the NW Mediterranean: evidence from stable isotope signatures and fatty CHAPTER3 acid composition 79 Associations between fish and jellyfish in the NW CHAPTER4 Mediterranean 105 General Discussion 131 General Conclusion 141 Acknowledgements 145 Appendices 149 Summary 9 SUMMARY Jellyfish are important components of marine ecosystems, being a key link between lower and higher trophic levels.
    [Show full text]
  • First Records of Three Cepheid Jellyfish Species from Sri Lanka With
    Sri Lanka J. Aquat. Sci. 25(2) (2020): 45-55 http://doi.org/10.4038/sljas.v25i2.7576 First records of three cepheid jellyfish species from Sri Lanka with redescription of the genus Marivagia Galil and Gershwin, 2010 (Cnidaria: Scyphozoa: Rhizostomeae: Cepheidae) Krishan D. Karunarathne and M.D.S.T. de Croos* Department of Aquaculture and Fisheries, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila (NWP), 60170, Sri Lanka. *Correspondence ([email protected], [email protected]) https://orcid.org/0000-0003-4449-6573 Received: 09.02.2020 Revised: 01.08.2020 Accepted: 17.08.2020 Published online: 15.09.2020 Abstract Cepheid medusae appeared in great numbers in the northeastern coastal waters of Sri Lanka during the non- monsoon period (March to October) posing adverse threats to fisheries and coastal tourism, but the taxonomic status of these jellyfishes was unknown. Therefore, an inclusive study on jellyfish was carried out from November 2016 to July 2019 for taxonomic identification of the species found in coastal waters. In this study, three species of cepheid mild stingers, Cephea cephea, Marivagia stellata, and Netrostoma setouchianum were reported for the first time in Sri Lankan waters. Moreover, the diagnostic description of the genus Marivagia is revised in this study due to the possessing of appendages on both oral arms and arm disc of Sri Lankan specimens, comparing with original notes and photographs of M. stellata. Keywords: Indian Ocean, invasiveness, medusae, morphology, taxonomy INTRODUCTION relationships with other fauna (Purcell and Arai 2001), and even dead jellyfish blooms can The class Scyphozoa under the phylum Cnidaria transfer mass quantities of nutrients into the sea consists of true jellyfishes.
    [Show full text]
  • Ectosymbiotic Behavior of Cancer Gracilis and Its Trophic Relationships with Its Host Phacellophora Camtschatica and the Parasitoid Hyperia Medusarum
    MARINE ECOLOGY PROGRESS SERIES Vol. 315: 221–236, 2006 Published June 13 Mar Ecol Prog Ser Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum Trisha Towanda*, Erik V. Thuesen Laboratory I, Evergreen State College, Olympia, Washington 98505, USA ABSTRACT: In southern Puget Sound, large numbers of megalopae and juveniles of the brachyuran crab Cancer gracilis and the hyperiid amphipod Hyperia medusarum were found riding the scypho- zoan Phacellophora camtschatica. C. gracilis megalopae numbered up to 326 individuals per medusa, instars reached 13 individuals per host and H. medusarum numbered up to 446 amphipods per host. Although C. gracilis megalopae and instars are not seen riding Aurelia labiata in the field, instars readily clung to A. labiata, as well as an artificial medusa, when confined in a planktonkreisel. In the laboratory, C. gracilis was observed to consume H. medusarum, P. camtschatica, Artemia franciscana and A. labiata. Crab fecal pellets contained mixed crustacean exoskeletons (70%), nematocysts (20%), and diatom frustules (8%). Nematocysts predominated in the fecal pellets of all stages and sexes of H. medusarum. In stable isotope studies, the δ13C and δ15N values for the megalopae (–19.9 and 11.4, respectively) fell closely in the range of those for H. medusarum (–19.6 and 12.5, respec- tively) and indicate a similar trophic reliance on the host. The broad range of δ13C (–25.2 to –19.6) and δ15N (10.9 to 17.5) values among crab instars reflects an increased diversity of diet as crabs develop. The association between C.
    [Show full text]
  • Life Cycle of Chrysaora Fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1
    Life Cycle of Chrysaora fuscescens (Cnidaria: Scyphozoa) and a Key to Sympatric Ephyrae1 Chad L. Widmer2 Abstract: The life cycle of the Northeast Pacific sea nettle, Chrysaora fuscescens Brandt, 1835, is described from gametes to the juvenile medusa stage. In vitro techniques were used to fertilize eggs from field-collected medusae. Ciliated plan- ula larvae swam, settled, and metamorphosed into scyphistomae. Scyphistomae reproduced asexually through podocysts and produced ephyrae by undergoing strobilation. The benthic life history stages of C. fuscescens are compared with benthic life stages of two sympatric species, and a key to sympatric scyphome- dusa ephyrae is included. All observations were based on specimens maintained at the Monterey Bay Aquarium jelly laboratory, Monterey, California. The Northeast Pacific sea nettle, Chry- tained at the Monterey Bay Aquarium, Mon- saora fuscescens Brandt, 1835, ranges from terey, California, for over a decade, with Mexico to British Columbia and generally ap- cultures started by F. Sommer, D. Wrobel, pears along the California and Oregon coasts B. B. Upton, and C.L.W. However the life in late summer through fall (Wrobel and cycle remained undescribed. Chrysaora fusces- Mills 1998). Relatively little is known about cens belongs to the family Pelagiidae (Gersh- the biology or ecology of C. fuscescens, but win and Collins 2002), medusae of which are when present in large numbers it probably characterized as having a central stomach plays an important role in its ecosystem giving rise to completely separated and because of its high biomass (Shenker 1984, unbranched radiating pouches and without 1985). Chrysaora fuscescens eats zooplankton a ring-canal.
    [Show full text]
  • Growth and Development of Chrysaora Quinquecirrha Reared Under Different Diet Compositions
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA REARED UNDER DIFFERENT DIET COMPOSITIONS Mestrado em Ecologia Marinha Guilherme da Costa Cruz Dissertação orientada por: Doutora Susana Garrido e Professor Pedro Ré 2015 GROWTH AND DEVELOPMENT OF CHRYSAORA QUINQUECIRRHA UNDER DIFFERENT DIETS Index I. ACKNOWLEDGEMENTS .................................................................................................................. 4 II. ABSTRACT/RESUMO ...................................................................................................................... 6 III. INTRODUCTION ............................................................................................................................. 9 III. 1. THE MEDICAL POTENTIAL OF VENOM............................................................................................. 11 III. 2. NATURAL ECOLOGY AND LIFE CYCLE .............................................................................................. 12 III. 3. NATURAL DIET AND FEEDING BEHAVIOUR ...................................................................................... 14 III. 4. GROWTH FACTORS AND BLOOMS ................................................................................................ 16 III. 5. JELLYFISH REARING AND AQUARIUM PRECAUTIONS .......................................................................... 18 III. 6. THE SPECIES UNDER STUDY: CHRYSAORA QUINQUECIRRHA ................................................................
    [Show full text]