Molecular and Morphological Evolution of the Amphipod Radiation of Lake Baikal

Total Page:16

File Type:pdf, Size:1020Kb

Molecular and Morphological Evolution of the Amphipod Radiation of Lake Baikal W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2002 Molecular and morphological evolution of the amphipod radiation of Lake Baikal Kenneth S. Macdonald III College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Ecology and Evolutionary Biology Commons, Genetics Commons, Molecular Biology Commons, and the Zoology Commons Recommended Citation Macdonald, Kenneth S. III, "Molecular and morphological evolution of the amphipod radiation of Lake Baikal" (2002). Dissertations, Theses, and Masters Projects. Paper 1539616759. https://dx.doi.org/doi:10.25773/v5-axk5-fs83 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Reproduced with with permission permission of the of copyright the copyright owner. owner.Further reproductionFurther reproduction prohibited without prohibited permission. without permission. Molecular and Morphological Evolution of the Amphipod Radiation of Lake Baikal A Dissertation Presented to The Faculty of the School of Marine Science The College of William and Mary In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Kenneth S. Macdonald III 2002 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Approval Sheet This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Kenneth Macdonald III Approved, September 2002 f j J. Emmett Duffy, Ph.D. Committee Chairman/Advisor John Graves Kuehl John Holsinger Dept, of Biological Sciences Old Dominion University CftfF Cunningham Department of Biology Duke University ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Acknowledgments ...................................................................................................................... v List of Tables.............................................................................................................................vii List of Figures...........................................................................................................................viii Abstract....................................................................................................................................... x Introduction................................................................................................................................ 2 Literature Cited ...........................................................................................................................12 Chapter 1: A molecular phylogeny of the amphipods of Lake Baikal using 16S rDNA Abstract....................................................................................................................................... 18 Introduction ................................................................................................................................. 19 Materials and Methods .............................................................................................................. 24 Results.........................................................................................................................................28 Discussion .................................................................................................................................. 31 Literature Cited .......................................................................................................................... 41 Chapter 2: A Combined Molecular and Morphological Phylogenetic Analysis of the Amphipods of Lake Baikal, Russia Abstract.......................................................................................................................................65 Introduction ................................................................................................................................66 Materials and Methods ............................................................................................................... 69 Results.........................................................................................................................................74 iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Discussion. 76 Literature Cited ...........................................................................................................................83 Chapter 3: Morphological Character Evolution of the Amphipods of Lake Baikal Abstract..................................................................................................................................... 100 Introduction ...............................................................................................................................101 Materials and Methods ..............................................................................................................104 Results....................................................................................................................................... 105 Discussion ................................................................................................................................. 107 Literature Cited ......................................................................................................................... 116 General Conclusions.............................................................................................................. 141 Literature Cited ........................................................................................................................ 145 Appendices.............................................................................................................................. 147 Vita............................................................................................................................................161 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgments I would first and most importantly thank my major advisor. Dr. Emmett Duffy. Emmett not only took me. an aspiring "fish biologist”, under his wing and opened my eyes to the wonders of the invertebrate world, he was also very generous with his time and support. He also allowed me to not only achieve my goals, but also to have fun along the way. I also want to thank Dr. John Graves, who was a second major advisor in almost every way but name, for his support and for generously allowing almost unfettered use of his laboratory. I want to thank the rest of my committee: Dr. Cliff Cunningham, for his enthusiastic support and his analytical prowess; Dr. John Holsinger. for his amphipod expertise; and Dr. Steve Kuehl, for his different (i.e. non-biological) viewpoint and questions. I would also like to thank my two Russian colleagues: Dr. Nikolai Muguc provided numerous samples, and Dr. Lev Yampolsky not only supplied me with specimens, he also guided me to Lake Baikal, and allowed me to experience this wondrous place for myself. Thanks to all my lab mates, both in the Fisheries Genetics Lab and in the Evolutionary Ecology Lab (Go Team MOBEE!) for unending support, numerous lab lunches, beautiful days on the Ferry Pier, and all the juicy gossip I could bear. Also thanks to Dr. Dave Carlini, who helped me create a sturdy foundation of phylogenetic knowledge that has been steadily built upon during my years at VIMS, and Jan McDowell, who taught me most of the lab techniques I’ve been botching (through no fault of her own) for the last several years. I also want to thank my family, who, along with all the snide comments, also gave me v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. their undying love and support through many, many years of schooling. I want to thank my many wonderful friends I've collected over my seven years at VIMS, especially Sara, who has helped me deal with both the good and bad for over half of those years. When you spend seven years in once place, you tend to accumulate debts to practically everyone, so I finally want to thank the VIMS community in general, for making my tenure here an enjoyable one. This dissertation was financially supported by an NSF grant (DEB 9S-157S5). by part of a NOAA NMFS CMER award (NA17FE1497). and by numerous VIMS Minor Research Grants. VIMS GSA Minigrants, and William and Mary Minor Research Grants. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Tables Chapter 1 1. Species Sampled .................................................................................................................... 47 2. 16S Pairvvise Distances .......................................................................................................... 48 Chapter 2 1. Species Sampled .................................................................................................................... 87 2. Results of Phylogenetic Analyses ..........................................................................................88
Recommended publications
  • On the Current State of Taxonomy of the Baikal Lake Amphipods (Crustacea: Amphipoda) and the Typological Ways of Constructing Their System
    Arthropoda Selecta 28(3): 374–402 © ARTHROPODA SELECTA, 2019 On the current state of taxonomy of the Baikal Lake amphipods (Crustacea: Amphipoda) and the typological ways of constructing their system Î ñîâðåìåííîì ñîñòîÿíèè òàêñîíîìèè áàéêàëüñêèõ àìôèïîä (Crustacea: Amphipoda) è òèïîëîãè÷åñêîì ñïîñîáå ïîñòðîåíèÿ èõ ñèñòåìû V.V. Takhteev1, 2 Â.Â. Òàõòååâ1, 2 1 Department of Biological and Soil Science at Irkutsk State University, Karl Marx St. 1, Irkutsk 664003, Russia. E-mail: [email protected] 1 Иркутский государственный университет, биолого-почвенный факультет, ул. К. Маркса, 1, Иркутск 664003, Россия. E-mail: [email protected] 2 Baikal Museum of Irkutsk Scientific Center SB RAS, Akademicheskaya St. 1, Listvyanka Settl., Irkutsk Region 664520, Russia. 2 Байкальский Музей Иркутского научного центра Сибирского отделения Российской академии наук, ул. Академическая, 1, пос. Листвянка Иркутской обл. 664520, Россия. KEY WORDS: amphipods, Lake Baikal, taxonomy, taxonomic inflation, archetype, core, deviations, estab- lishment of families. КЛЮЧЕВЫЕ СЛОВА: амфиподы, озеро Байкал, таксономия, таксономическая инфляция, архетип, ядро, отклонения, установление семейств. Editorial note On the publication “On the current state of taxonomy of the Baikal Lake amphipods (Crustacea, Amphipoda) and the typological ways of constructing their system” by V.V. Takhteev In this issue we present an extensive article prepared by Prof. Vadim V. Takhteev, which is based on his long time effort in the study of diversity of amphipods in Lake Baikal and its watershed. This paper is highly polemical and may even seem either archaic or heretical in the time of domination of the phylogenetic paradigms in systematics. The author advocates classical morphological taxonomy, which own tradition, methods (disregarding whether we call it typology or not) and the language are significantly older than the modern phylogenetic approach.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Characteristics and Potential Causes of Declining Diporeia Spp
    Characteristics and Potential Causes of Declining Diporeia spp. Populations in Southern Lake Michigan and Saginaw Bay, Lake Huron Thomas F. Nalepa1 Great Lakes Environmental Research Laboratory, NOAA 2205 Commonwealth Blvd. Ann Arbor, Michigan, U.S.A. 48105 David L. Fanslow Great Lakes Environmental Research Laboratory, NOAA 2205 Commonwealth Blvd. Ann Arbor, Michigan, U.S.A. 48105 Gretchen Messick Cooperative Oxford Laboratory, NOAA 904 S. Morris Street Oxford, Maryland, U.S.A. 21654 Abstract Populations of the amphipods Diporeia spp. are declining in all of the Great Lakes except Lake Superior. We examine characteristics and potential causes of declines in southern Lake Michigan and outer Saginaw Bay, Lake Huron. Amphipod populations began to decline within 3-4 years after zebra mussels (Dreissena polymorpha) colonized both areas. In Lake Michigan, which was better studied, the decline occurred first in shallow waters (<30 m) and then progressed deeper (51-90 m). Between 1980- 1981 (pre-Dreissena) and 1998-1999 (post-Dreissena), densities at sites in these two depth intervals declined 92% 1 Corresponding author: [email protected] 157 and 58%, respectively. At a 45-m site in southeastern Lake Michigan, densities of Diporeia spp. declined to near zero within six months even though mussels were never collected at the site itself. At a nearby 45-m site, densities declined gradually to zero over a six-year period and correlated with increased mussel densities. Although mussels are likely outcompeting Diporeia spp. populations for food, and food limitation is probably a contributing factor to population declines, populations show no physiological signs of starvation; lipid content is at a maximum as densities approach zero.
    [Show full text]
  • Amphipod Newsletter 39 (2015)
    AMPHIPOD NEWSLETTER 39 2015 Interviews BIBLIOGRAPHY THIS NEWSLETTER PAGE 19 FEATURES INTERVIEWS WITH ALICJA KONOPACKA AND KRZYSZTOF JAŻDŻEWSKI PAGE 2 MICHEL LEDOYER WORLD AMPHIPODA IN MEMORIAM DATABASE PAGE 14 PAGE 17 AMPHIPOD NEWSLETTER 39 Dear Amphipodologists, Statistics from We are delighted to present to you Amphipod Newsletter 39! this Newsletter This issue includes interviews with two members of our amphipod family – Alicja Konopacka and Krzysztof Jazdzewski. Both tell an amazing story of their lives and work 2 new subfamilies as amphipodologists. Sadly we lost a member of our amphipod 21 new genera family – Michel Ledoyer. Denise Bellan-Santini provides us with a fitting memorial to his life and career. Shortly many 145 new species members of the amphipod family will gather for the 16th ICA in 5 new subspecies Aveiro, Portugal. And plans are well underway for the 17th ICA in Turkey (see page 64 for more information). And, as always, we provide you with a Bibliography and index of amphipod publications that includes citations of 376 papers that were published in 2013-2015 (or after the publication of Amphipod Newsletter 38). Again, what an amazing amount of research that has been done by you! Please continue to notify us when your papers are published. We hope you enjoy your Amphipod Newsletter! Best wishes from your AN Editors, Wim, Adam, Miranda and Anne Helene !1 AMPHIPOD NEWSLETTER 39 2015 Interview with two prominent members of the “Polish group”. The group of amphipod workers in Poland has always been a visible and valued part of the amphipod society. They have organised two of the Amphipod Colloquia and have steadily provided important results in the world of amphipod science.
    [Show full text]
  • Based Phylogeny of Endemic Lake Baikal Amphipod Species Flock
    Molecular Ecology (2017) 26, 536–553 doi: 10.1111/mec.13927 Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection SERGEY A. NAUMENKO,*†‡ MARIA D. LOGACHEVA,*† § NINA V. POPOVA,* ANNA V. KLEPIKOVA,*† ALEKSEY A. PENIN,*† GEORGII A. BAZYKIN,*†§¶ ANNA E. ETINGOVA,** NIKOLAI S. MUGUE,††‡‡ ALEXEY S. KONDRASHOV*§§ and LEV Y. YAMPOLSKY¶¶ *Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, †Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia, ‡Genetics and Genome Biology Program, The Hospital For Sick Children, Toronto, ON, Canada, §Pirogov Russian National Research Medical University, Moscow, Russia, ¶Skolkovo Institute of Science and Technology, Skolkovo, Russia, **Baikal Museum, Irkutsk Research Center, Russian Academy of Sciences, Listvyanka, Irkutsk region, Russia, ††Laboratory of Molecular Genetics, Russian Institute for Fisheries and Oceanography (VNIRO), Moscow, Russia, ‡‡Laboratory of Experimental Embryology, Koltsov Institute of Developmental Biology, Moscow, Russia, §§Department of Ecology and Evolution, University of Michigan, Ann Arbor, MI, USA, ¶¶Department of Biological Sciences, East Tennessee State University, Johnson City, TN, USA Abstract Endemic species flocks inhabiting ancient lakes, oceanic islands and other long-lived isolated habitats are often interpreted as adaptive radiations. Yet molecular evidence for directional
    [Show full text]
  • Viewed in [1–4])
    The Author(s) BMC Genomics 2016, 17(Suppl 14):1016 DOI 10.1186/s12864-016-3357-z RESEARCH Open Access Evolution of mitochondrial genomes in Baikalian amphipods Elena V. Romanova1, Vladimir V. Aleoshin2,3, Ravil M. Kamaltynov1, Kirill V. Mikhailov2,3, Maria D. Logacheva2,3,4, Elena A. Sirotinina1, Alexander Yu. Gornov5, Anton S. Anikin5 and Dmitry Yu. Sherbakov1,6* From The International Conference on Bioinformatics of Genome Regulation and Structure\Systems Biology (BGRS\SB-2016) Novosibirsk, Russia. 29 August-2 September 2016 Abstract Background: Amphipods (Crustacea) of Lake Baikal are a very numerous and diverse group of invertebrates generally believed to have originated by adaptive radiation. The evolutionary history and phylogenetic relationships in Baikalian amphipods still remain poorly understood. Sequencing of mitochondrial genomes is a relatively feasible way for obtaining a set of gene sequences suitable for robust phylogenetic inferences. The architecture of mitochondrial genomes also may provide additional information on the mechanisms of evolution of amphipods in Lake Baikal. Results: Three complete and four nearly complete mitochondrial genomes of Baikalian amphipods were obtained by high-throughput sequencing using the Illumina platform. A phylogenetic inference based on the nucleotide sequences of all mitochondrial protein coding genes revealed the Baikalian species to be a monophyletic group relative to the nearest non-Baikalian species with a completely sequenced mitochondrial genome - Gammarus duebeni.Thephylogeny of Baikalian amphipods also suggests that the shallow-water species Eulimnogammarus has likely evolved from a deep-water ancestor, however many other species have to be added to the analysis to test this hypothesis. The gene order in all mitochondrial genomes of studied Baikalian amphipods differs from the pancrustacean ground pattern.
    [Show full text]
  • Molecular Data Suggest Multiple Origins and Diversification Times Of
    www.nature.com/scientificreports OPEN Molecular data suggest multiple origins and diversifcation times of freshwater gammarids on the Aegean archipelago Kamil Hupało1,3*, Ioannis Karaouzas2, Tomasz Mamos1,4 & Michał Grabowski1 Our main aim was to investigate the diversity, origin and biogeographical afliations of freshwater gammarids inhabiting the Aegean Islands by analysing their mtDNA and nDNA polymorphism, thereby providing the frst insight into the phylogeography of the Aegean freshwater gammarid fauna. The study material was collected from Samothraki, Lesbos, Skyros, Evia, Andros, Tinos and Serifos islands as well as from mainland Greece. The DNA extracted was used for amplifcation of two mitochondrial (COI and 16S) and two nuclear markers (28S and EF1-alpha). The multimarker time- calibrated phylogeny supports multiple origins and diferent diversifcation times for the studied taxa. Three of the sampled insular populations most probably represent new, distinct species as supported by all the delimitation methods used in our study. Our results show that the evolution of freshwater taxa is associated with the geological history of the Aegean Basin. The biogeographic afliations of the studied insular taxa indicate its continental origin, as well as the importance of the land fragmentation and the historical land connections of the islands. Based on the fndings, we highlight the importance of studying insular freshwater biota to better understand diversifcation mechanisms in fresh waters as well as the origin of studied Aegean freshwater taxa. Te Mediterranean islands are considered natural laboratories of evolution, exhibiting high levels of diversity and endemism, making them a vital part of one of the globally most precious biodiversity hotspots and a model system for studies of biogeography and evolution1–4.
    [Show full text]
  • Lake Baikal Bibliography, 1989- 1999
    UC San Diego Bibliography Title Lake Baikal Bibliography, 1989- 1999 Permalink https://escholarship.org/uc/item/7dc9945d Author Limnological Institute of RAS SB Publication Date 1999-12-31 eScholarship.org Powered by the California Digital Library University of California Lake Baikal Bibliography, 1989- 1999 This is a bibliography of 839 papers published in English in 1989- 1999 by members of Limnological Institute of RAS SB and by their partners within the framework of the Baikal International Center for Ecological Research. Some of the titles are accompanied by abstracts. Coverage is on different aspects of Lake Baikal. Adov F., Takhteev V., Ropstorf P. Mollusks of Baikal-Lena nature reserve (northern Baikal). // World Congress of Malacology: Abstracts; Washington, D.C.: Unitas Malacologica; 1998: 6. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // VI International Conference on Copepoda: Abstracts; July 29-August 3, 1996; Oldenburg/Bremerhaven, Germany. Konstanz; 1996: 33. Afanasyeva E.L. Life cycle of Epischura baicalensis Sars (Copepoda, Calanoida) in Lake Baikal. // J. Mar. Syst.; 1998; 15: 351-357. Epischura baicalensis Sars is a dominant pelagic species of Lake Baikal zooplankton. This is endemic to Lake Baikal and inhabits the entire water column. It produces two generations per year: the winter - spring and the summer. These copepods develop under different ecological conditions and vary in the duration of life stages, reproduction time, maturation of sex products and adult males and females lifespan. The total life period of the animals from each generation is one year. One female can produce 10 egg sacks every 10 - 20 days during its life time.
    [Show full text]
  • Open Mcmullin-Phd-Thesis2.Pdf
    The Pennsylvania State University The Graduate School Department of Biology PHYLOGEOGRAPHY OF DEEP-SEA VESTIMENTIFERANS AND A POPULATION GENETICS STUDY OF TWO SPECIES, LAMELLIBRACHIA LUYMESI AND SEEPIOPHILA JONESI, FROM THE GULF OF MEXICO A Thesis in Biology by Erin R. McMullin © 2003 Erin R. McMullin Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2003 The thesis of Erin McMullin has been reviewed and approved* by the following: Charles R. Fisher Professor of Biology Thesis Co-Adviser Co-Chair of Committee Stephen W. Schaeffer Associate Professor of Biology Thesis Co-Adviser Co-Chair of Committee Andrew Clark Professor of Biology Lee Kump Professor of Geosciences Kimberlyn Nelson Forensic Examiner Mitotyping Technologies Special Signatory Douglas Cavener Professor of Biology Head of the Biology Department * Signatures are on file at the Graduate School iii ABSTRACT First discovered in 1977 on the Galapagos Rift, vestimentiferans are a group of deep-sea annelids found in a variety of environments worldwide. Vestimentiferan communities are isolated pockets of high biomass in the otherwise nutrient-poor deep-sea. Chemosynthesis, not photosynthesis, is the underlying energy source for vestimentiferans, which entirely lack a digestive tract and rely on internal sulfide-oxidizing symbionts for fixed carbon. Symbionts appear to be acquired by the motile vestimentiferan larvae before they settle and become sessile adults. The ability of both these organisms and their symbionts to disperse across the sometimes considerable distances between sulfidic environments has been a topic of study for over a decade. This study addresses the question of dispersal by two different methods, with a biogeographical approach of all vestimentiferan species, and through the population genetic analysis of two species within the Gulf of Mexico.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS Table of Contents.................................................................................................................1 Introduction..........................................................................................................................3 Amphipod Superfamilies.....................................................................................................4 Index of Families.................................................................................................................7 I Suborder Ingolfiellidea....................................................................................................12 Suborder Senticaudata Infraorder Talitrida II. Superfamily Talitroidea........................................................................20 Infraorder Corophiida III. Superfamily Aoroidea.........................................................................65 IV. Superfamily Cheluroidea.....................................................................91 V. Superfamily Chevalioidea....................................................................96 VI. Superfamily Corophioidea.................................................................100 Infraorder Caprellida VII. Superfamily Caprelloidea................................................................142 VIII. Superfamily Neomegamphopoidea................................................191 IX. Superfamily Photoidea......................................................................199 Infraorder Hadziida X.
    [Show full text]
  • The Aquatic Glacial Relict Fauna of Norway – an Update of Distribution and Conservation Status
    Fauna norvegica 2016 Vol. 36: 51-65. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status Ingvar Spikkeland1, Björn Kinsten2, Gösta Kjellberg3, Jens Petter Nilssen4 and Risto Väinölä5 Spikkeland I, Kinsten B, Kjellberg G, Nilssen JP, Väinölä R. 2016. The aquatic glacial relict fauna of Norway – an update of distribution and conservation status. Fauna norvegica 36: 51-65. The aquatic “glacial relict” fauna in Norway comprises a group of predominantly cold-water animals, mainly crustaceans, which immigrated during or immediately after the deglaciation when some of the territory was still inundated by water. Their distribution is mainly confined to lakes in the SE corner of the country, east of the Glomma River in the counties of Akershus, Østfold and Hedmark. We review the history and current status of the knowledge on this assemblage and of two further similarly distributed copepod species, adding new observations from the last decades, and notes on taxonomical changes and conservation status. By now records of original populations of these taxa have been made in 42 Norwegian lakes. Seven different species are known from Lake Store Le/Foxen on the Swedish border, whereas six species inhabit lakes Femsjøen, Øymarksjøen and Rødenessjøen, and five are found in Aspern, Aremarksjøen and in the largest Norwegian lake, Mjøsa. From half of the localities only one of the species is known. The most common species are Mysis relicta (s.str.), Pallaseopsis quadrispinosa and Limnocalanus macrurus. Some populations may have become extirpated recently due to eutrophi- cation, acidification or increased fish predation. Apart from the main SE Norwegian distribution, some lakes of Jæren, SW Norway, also harbour relict crustaceans, which is puzzling.
    [Show full text]
  • Dikerogammarus Villosus) Ecological Risk Screening Summary
    Killer Shrimp (Dikerogammarus villosus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, September 2014 Revised, June 2015 and September 2016 Web Version, 09/14/2017 Photo: S. Giesen, NOAA Great Lakes Environmental Research Laboratory 1 Native Range, and Status in the United States Native Range From CABI (2015): “The amphipod is native to the lower reaches of the rivers discharging into the Black Sea and Caspian Sea (Dedju, 1967; Nesemann et al., 1995; Vaate et al., 2002).” Status in the United States From Dettloff et al. (2015): “Not established in North America” Means of Introductions in the United States From Dettloff et al. (2015): “Due to its high tolerance to varying levels of salinity, oxygen and temperature, D. villosus is considered a highly likely candidate for introduction to the Great Lakes through ballast water 1 transport from European ships ([Bruijs] et al. 2001, Dick and Platvoet 2001, Dick et al. 2002, Grigorovich et al. 2002, MacIsaac 1999, Mills et al. 1993, Ricciardi and Rasmussen 1998).” Remarks From Dettloff et al. (2015): “Dikerogammarus bispinosus was originally described as a subspecies of D. villosus (Martynov 1925), but a more recent genetic study by Müller et al. (2002) demonstrated that these two taxa should be considered to be separate species.” “Obesogammarus aralensis, listed by Grigorovich et al 2003 as having a high probability of invading the Great Lakes, is most likely a synonym for Dikerogammarus villosus.” 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From CABI (2015): “Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Crustacea Class: Malacostraca Subclass: Eumalacostraca Order: Amphipoda Suborder: Gammaridea Family: Gammaridae Genus: Dikerogammarus Species: Dikerogammarus villosus Dikerogammarus villosus Sowinsky 1894 is a valid amphipod species.” Size, Weight, and Age Range From CABI (2015): “The maximum reported body length is 30 mm.” From Dettloff et al.
    [Show full text]