Conversion of Carinata Oil Into “Drop-In” Fuels & Chemicals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11) Patent Number: 5,135,573 Van Den Berg Et Al
USOO5135573A United States Patent (19) 11) Patent Number: 5,135,573 van den Berg et al. 45 Date of Patent: Aug. 4, 1992 (54) REMOVAL OF METAL SOAPS FROM (56) References Cited HYDROGENATED FATTY PRODUCTS U.S. PATENT DOCUMENTS 1,390,688 9/1921 Ellis . 75) Inventors: Hendrikus J. van den Berg, 2,311,633 2/1943 Blaso ................................... 260/420 Doetinchem, Netherlands; Adelheid 2,650,931 9/1953 Dronet al. .......................... 260/409 M. Deryck, Goch; Pieter M. van 4,049,520 9/1977 Wagner ............................... 204/186 Dijk, Schoonhoven, both of Fed. Rep. of Germany; Cornelis M. Lok, FOREIGN PATENT DOCUMENTS BL Didam; Johannes C. Oudejans, 2724867 12/1978 Fed. Rep. of Germany. AS Zevenaar, both of Netherlands Primary Examiner-Peter D. Rosenberg Attorney, Agent, or Firm-Cushman, Darby & Cushman 73 Assignee: Unilever Patent Holdings B.V., Netherlands (57) ABSTRACT The invention provides a process for removing fatty acid metal soaps derived from metals with an atomic 21 Appl. No.: 617,038 number from 27 to 29 from hydrogenated fatty products comprising separating solid metal precipitated under (22 Filed: Nov. 23, 1990 the influence of hydrogen at a pressure ranging between 0.05 and 10 MPa from the hydrogenated fatty products. (30) Foreign Application Priority Data Preferably the hydrogen pressure is between 0.2 and 5 MPa. Preferably the metal is nickel. It is recommended Nov. 23, 1989 EP European Pat. Off......... 89202989.3 to effect the separation by filtration, using a filter com Apr. 6, 1990 (EP) European Pat. Off. ........ 90200832.5 prising vertical pressure leaves. Also it is possible to treat the hydrogenated fatty product with hydrogen 51) Int. -
Sun & Earth and the “Green Economy”
Studies in Materials Innovation Center for Sun & Earth and the “Green Economy”: Contemporary A Case Study in Small-Business Innovation History and Policy Kristoffer Whitney Chemical Heritage Foundation Studies in Materials Innovation Center for Sun & Earth and the Contemporary History and Policy “Green Economy”: A Case Study in Small-Business Innovation Kristoffer Whitney Chemical Heritage Foundation © 2009 by the Chemical Heritage Foundation. All rights reserved. No part of this publication may be reproduced in any form by any means (electronic, mechanical, xerographic, or other) or held in any information storage or retrieval system without written permission from the publisher. Printed in the United States of America. For information about the Chemical Heritage Foundation, its Center for Contemporary History and Policy, and its publications write: Chemical Heritage Foundation 315 Chestnut Street Philadelphia, PA 19106-2702, USA Fax: (215) 925-1954 www.chemheritage.org Design by Willie•Fetchko Graphic Design Cover: Buckytube and buckyball images, gift of Richard E. Smalley, Chemical Heritage Foundation Collections. Dendrimer images courtesy of Dendritic Nanotechnologies, Inc. CONTENTS I. Introduction and Summary |3 II. Attention to Sources: The Sun & Earth Brand of Innovation |5 III. Sun & Earth in Context: Evolution of the “Green Economy” |11 IV. Findings |17 V. Appendixes |23 1. References 2. Notes on Method and Acknowledgments 3. About the Robert W. Gore Materials Innovation Project SUN & EARTH AND THE “GREEN ECONOMY” |3 I. INTRODUCTION AND SUMMARY ince 1980 the household-cleaning-products industry has proliferated with small, niche firms catering to consumers interested in plant-based surfactants, S or oleochemicals, rather than mainstream petroleum-based cleaners. -
Oleochemistry Potential from Brazil Northeastern Exotic Plants M.C
Oleochemistry potential from Brazil northeastern exotic plants M.C. Lisboa, F.M.S. Wiltshire, R Souza, A.T. Fricks, C. Dariva, F. Carrière, Á.S. Lima, C.M.F. Soares To cite this version: M.C. Lisboa, F.M.S. Wiltshire, R Souza, A.T. Fricks, C. Dariva, et al.. Oleochemistry potential from Brazil northeastern exotic plants. Biochimie, Elsevier, In press, 10.1016/j.biochi.2020.09.002. hal-02946034 HAL Id: hal-02946034 https://hal.archives-ouvertes.fr/hal-02946034 Submitted on 22 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Preprint of the article published in Biochimie (2020) 2 DOI: 10.1016/j.biochi.2020.09.002 3 4 OLEOCHEMISTRY POTENTIAL FROM BRAZIL NORTHEASTERN EXOTIC 5 PLANTS 6 M. C. Lisboa a,b,c , F. M. S. Wiltshire a,b , R. L. Souza a,b , A.T. Fricks a,b , C. Dariva a,b , F. 7 Carrière c, Á. S. Lima a,b , C. M. F. Soares a,b 8 9 aUniversidade Tiradentes, Av. Murilo Dantas, 300, Farolândia, Aracaju, SE 49032-490, 10 Brazil. 11 bInstituto de Tecnologia e Pesquisa, Av. -
Parthibansiwayananpfche2015.Pdf
PRODUCTION, CHARACTERIZATION AND PRE-COMMERCIALIZATION OF LAUNDRY DETERGENT POWDERS INCORPORATED WITH PALM C16 METHYL ESTER SULPHONATES PARTHIBAN SIWAYANAN A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Engineering (Process Plant Management) Faculty of Chemical Engineering Universiti Teknologi Malaysia FEBRUARY 2015 iii DEDICATION I dedicate this humble effort to my parents, my beloved wife and our lovely children for their continuous prayers, love, support and understanding iv ACKNOWLEDGEMENT First and foremost, I would like to express my utmost gratitude to my supervisors, Prof. Ramlan Aziz and Prof. Dr. Nooh Abu Bakar for their advice and guidance throughout the course of study. My sincere appreciation also extends to Assoc. Prof. Dr. Shreeshivadasan Cheliappan and Dr. Zainul Akmar Zakaria for their invaluable support and assistance. This research was supported by the Ministry of Science, Technology and Innovation (MOSTI) and Ministry of Education (MOE) and I am very grateful for their financial contribution. I am also thankful to the staff members of the Institute of Bioproduct Development (IBD, UTM), my colleagues in Pentamoden Sdn. Bhd. and Ir. Dr. Hj. Hamdan Ya and Tn. Hj. Ropien Jokiman of SIRIM Berhad for their great help during the course of my research. In the process of preparing this dissertation, I was in contact with many people, including researchers, engineers, academicians, industry experts and consultants. They have contributed extensively towards my understanding and thoughts. My heartfelt appreciation also extends to all of them. I will forever be thankful to Datuk Dr. Salmiah Ahmad for introducing me to the wonderful universe of oleochemicals. -
Metabolic Engineering for Unusual Lipid Production in Yarrowia Lipolytica
microorganisms Review Metabolic Engineering for Unusual Lipid Production in Yarrowia lipolytica Young-Kyoung Park * and Jean-Marc Nicaud Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +33-(0)1-74-07-16-92 Received: 14 November 2020; Accepted: 2 December 2020; Published: 6 December 2020 Abstract: Using microorganisms as lipid-production factories holds promise as an alternative method for generating petroleum-based chemicals. The non-conventional yeast Yarrowia lipolytica is an excellent microbial chassis; for example, it can accumulate high levels of lipids and use a broad range of substrates. Furthermore, it is a species for which an array of efficient genetic engineering tools is available. To date, extensive work has been done to metabolically engineer Y. lipolytica to produce usual and unusual lipids. Unusual lipids are scarce in nature but have several useful applications. As a result, they are increasingly becoming the targets of metabolic engineering. Unusual lipids have distinct structures; they can be generated by engineering endogenous lipid synthesis or by introducing heterologous enzymes to alter the functional groups of fatty acids. In this review, we describe current metabolic engineering strategies for improving lipid production and highlight recent researches on unusual lipid production in Y. lipolytica. Keywords: Yarrowia lipolytica; oleochemicals; lipids; unusual lipids; metabolic engineering 1. Introduction Microbial lipids are promising alternative fuel sources given growing concerns about climate change and environmental pollution [1–4]. They offer multiple advantages over plant oils and animal fats. For example, the production of microbial lipids does not result in resource competition with food production systems; is largely independent of environmental conditions; can be based on diverse substrates; and allows product composition to be customized based on the desired application [3,4]. -
Infant Nutrition: Health Risks Due to Erucic Acid Are Not to Be Expected
www.bfr.bund.de DOI 10.17590/20210629-131949 Infant nutrition: Health risks due to erucic acid are not to be expected BfR Opinion No 017/2021 issued 4 June 2021 Erucic acid is found in the oil-rich seeds of Brassicaceae such as rapeseed, but also in other plant families. Consequently, erucic acid is present in rapeseed oil as well as in other vegeta- ble oils. A chronic high intake of erucic acid impairsheart muscle, called myocardial lipidosis. Accordingly, the European Food Safety Authority (EFSA) has derived an intake level for erucic acid that can be consumed orally daily over an entire lifetime without any known health risk (tolerable daily intake; TDI). In addition, the European Commission has set maxi- mum permitted levels for erucic acid in certain foods, including infant formula and follow-on formula. In the present opinion, the German Federal Institute for Risk Assessment has assessed po- tential health risks for infants through the intake of erucic acid via infant formula, follow-on formula and baby food. For this purpose, a number of models were used to investigate under which conditions the exposure for infants could exceed the EFSA-derivedTDI for erucic acid. For the exposure assessments, data on erucic acid levels from food monitoring programmes of the Federal States of Germany were included in addition to the maximum permitted levels for erucic acid in infant formula and follow-on formula set by EU law. When considering data on actual erucic acid levels, such as provided by the food monitoring programmes of the Federal States of Germany, it is shown that erucic acid levels in infant formula and follow-on formula in Germany are considerably below the legally defined maxi- mum permitted levels of 0.4% of total fat content according to Delegated Regulation (EU) 2019/828. -
Sustainability Report
Sustainability report 2014 A Natural Chemistry TABLE OF CONTENTS 5 1 4 PRESERVE THE PLANET Introduction INTRODUCTION GREEN CHEMISTRY Energy & Climate Introduction Waste Management Responsible Sourcing Water Consumption & Treatment Innovative Solutions P 06 P 12 P 18 2 6 COMPANY PROFILE WORK TOGETHER Introduction Safety Culture Sustainable Employment Community involvement P 08 Collaborative platforms P 25 3 7 OUR CONCLUSION SUSTAINABILITY AND LOOKING POLICY AHEAD P 11 P 32 04 Oleon ~ A Natural Chemistry Sustainability report 2014 05 1 INTRODUCTION This sustainability report is now the third Employee well-being is of key importance consecutive, since we started formalizing in as there is no asset more important than the 2012 our longstanding focus on sustainable people who dedicate their energy every day actions throughout our enterprise. towards reaching Oleon’s ambitious targets. Regular staff surveys allow for a quick feedback Oleon’s shareholder, the Avril Group, has on areas where improvements can be made put sustainability in the core of its mission such as better communication or more training since it was founded 30 years ago by French and continuous development programs. farmers who wanted to create value for the Our employees also want to make a oilseed and protein sector. Oleon, A Natural contribution outside their workplace to the Chemistry, fully fits in this mission by adding improvement of our planet. Many of them value to renewable products grown by nature. are involved in community projects aimed at helping people in need or preserving the As the leading European company providing environment. oleochemical solutions to customers, we are proud to announce that over 90% of the This report will give examples of the various raw materials entering our formulations actions Oleon has taken towards sustainability are of renewable sources! In order to further in 2014 and will provide indicators to reduce the environmental footprint of our measure progress. -
Manon Fleurus 8801077 Winter 2018 a Major Research Paper Submitted
Manon Fleurus 8801077 Winter 2018 ‘SUSTAINABLE’ PALM OIL PLANTATIONS PUT TO THE TEST: A COMPARATIVE ANALYSIS OF GLOBAL AND INDONESIAN CERTIFICATIONS A Major Research Paper Submitted to the Faculty of Graduate and Postdoctoral Studies in Fulfillment of the Requirements for a Master of Arts in International Development and Globalization with a Specialization in Environmental Sustainability Under the supervision of Professor Jean-François Rousseau Examined by Professor Christopher Huggins University of Ottawa Faculty of Social Sciences School of International Development and Global Studies Table of Contents Acknowledgements ................................................................................................................. 3 List of Abbreviations ................................................................................................................ 4 List of Figures ........................................................................................................................... 5 List of Tables ............................................................................................................................ 5 Appendices .............................................................................................................................. 5 1. Introduction ...................................................................................................................... 6 2. Research and Methodology .............................................................................................. -
Reference to the Inheritance of Erucic Acid Content
Heredity 63 (1989) 309—314 The Genetical Society of Great Britain Received 12 April 1989 Fatty acid composition of resynthesized Brassica napus L., B. campestris L. and B. alboglabra Bailey with special reference to the inheritance of erucic acid content B. Y. Chen and Department of Crop Genetics and Breeding, W. K. Heneen* The Swedish University of Agricultural Sciences, S-268 00 Svalöv, Sweden. The fatty acid composition of the oil of four resynthesized rapeseed (Brassica napus L.) lines resulting from crosses between B.campestrisL. and B.alboglabraBailey was compared with that of the mid-parent value. Low palmitic acid content was partially epistatic over high. High oleic acid content could be either partially hypostatic to or transgressively epistatic over low content of this fatty acid, depending on the erucic acid contents of the parental species. Epistasis was observed for low linoleic acid content in two crosses whereas additive gene action was shown for this fatty acid in the other two crosses. Partial or transgressive epistasis was observed for low linolenic acid content. High eicosenoic acid content was generally epistatic over low. Partial epistasis was observed for high erucic acid content in three crosses but hypostasis was also observed in one cross. Oleic acid content played a key role in the change of fatty acid composition. Regarding the inheritance of erucic acid content, the hypothesis was substantiated that B. napus contained two genes for this fatty acid residing in the genomes from B. campestris and B. oleracea. Caution should be taken in accepting the proposed hypothesis (Krzymanski and Downey, 1969) that there is a series of erucic alleles based on the phenotypic value of erucic acid content, because the influence of different genetic backgrounds and/or ploidy level on the allelic performance is not taken into consideration. -
Oils and Fats As Renewable Raw Materials in Chemistry Ursula Biermann, Uwe Bornscheuer, Michael A
Reviews M. A. R. Meier et al. DOI: 10.1002/anie.201002767 Renewable Raw Materials Oils and Fats as Renewable Raw Materials in Chemistry Ursula Biermann, Uwe Bornscheuer, Michael A. R. Meier,* Jrgen O. Metzger, and Hans J. Schfer Keywords: Dedicated to Professor Marcel Lie Ken Jie on enzyme catalysis · fatty acids · the occasion of his 70th birthday homogeneous catalysis · polymers · renewable resources Angewandte Chemie 3854 www.angewandte.org 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2011, 50, 3854 – 3871 Renewable Resources Oils and fats of vegetable and animal origin have been the most From the Contents important renewable feedstock of the chemical industry in the past and in the present. A tremendous geographical and feedstock shift of 1. Introduction 3855 oleochemical production has taken place from North America and 2. Commodity Plant Oils and Fatty Europe to southeast Asia and from tallow to palm oil. It will be Acid Production 3857 important to introduce and to cultivate more and new oil plants containing fatty acids with interesting and desired properties for 3. Reactions of Unsaturated Fatty chemical utilization while simultaneously increasing the agricultural Compounds 3858 biodiversity. The problem of the industrial utilization of food plant oils 4. Enzymatic and Microbial has become more urgent with the development of the global biodiesel Transformations 3864 production. The remarkable advances made during the last decade in organic synthesis, catalysis, and biotechnology using plant oils and the 5. Summary and Outlook 3867 basic oleochemicals derived from them will be reported, including, for example, w-functionalization of fatty acids containing internal double bonds, application of the olefin metathesis reaction, and de novo synthesis of fatty acids from abundantly available renewable carbon sources. -
Elucidation of the Mechanism of Blockage in Sewer Pipes by Fatty Acid Deposition and Suspended Solid
water Article Elucidation of the Mechanism of Blockage in Sewer Pipes by Fatty Acid Deposition and Suspended Solid Toshihiko Otsuka 1, Hiroshi Yamazaki 2, Eriko Ankyu 3, Tofael Ahamed 3, Martin Anda 4 and Ryozo Noguchi 3,* 1 Saitama-Ken Environmental Analysis & Research Association, Saitama 330-0855, Japan; [email protected] 2 Faculty of Science and Engineering, Toyo University, Saitama 350-8585, Japan; [email protected] 3 Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan; [email protected] (E.A.); [email protected] (T.A.) 4 Environmental Engineering, School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150, Australia; [email protected] * Correspondence: [email protected]; Tel.: +81-29-853-4697 Received: 24 July 2020; Accepted: 13 August 2020; Published: 14 August 2020 Abstract: The objective of this study is to elucidate the mechanism by which blockages occur in sewer pipes following the deposition of fat, oil, and grease (FOG) and suspended solids (SS). In this study, a simulated wastewater flow experiment was conducted to elucidate the mechanism of sewer pipe blockage using lauric acid as fatty acid and florisil to simulate FOG and SS blockages, respectively. Unplasticized polyvinyl chloride pipes (φ = 50 mm) with a flow speed of 2 L/min and 1% inclination were used in this experiment. In “Case L & F (lauric acid florisil),” the deposition of florisil and adhesion of solids increased at the bottom of the sewer pipe over a set period. -
Canola Oil, Originally Known As Low Erucic Acid Rapeseed, Is a Vegetable Oil Derived from a Variety of Rapeseed That Is Low in Erucic Acid, As Opposed to Colza Oil
Canola oil, originally known as low erucic acid rapeseed, is a vegetable oil derived from a variety of rapeseed that is low in erucic acid, as opposed to colza oil. There are three distinct methods of extracting oil from canola: One is cold-pressed, where the seed goes in with no heating. Another is expeller crush, where the seed is heated to bring better extraction rates, and the third is solvent extraction, where the seed goes through a pre- press and is then washed with hexane. KROL is naturally cold-pressed, no heat added, no chemicals added. Moreover, it is a wonderfully balanced and nutritionally significant oil containing a healthy ratio of omega-6 to omega-3 essential fatty acids. Canola oil has a unique fatty acid profile very similar to extra virgin olive oil. Based on the fact that this oil has half the amount of saturated fat found in olive oil, many say it has the best fatty acid profile of any edible oil. Very low levels of saturated fats and high level of monounsaturated fats make this cold- pressed oil a staple for every health-conscious chef or home cook. Health benefits of canola oil Canola oil has very low saturated fats. It contains linoleic (omega-6) and a-linolenic acid (omega -3) essential fatty acids at 2:1 ratio, marking it as one of the healthiest cooking oils. It has highest levels of plant sterols, especially ß-sitosteroland campesterol. The US FDA has approved the following claim for phytosterols: "Foods containing at least 0.4 gram per serving of plant sterols, eaten twice a day with meals for a daily total intake of at least 0.8 gram, as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease." Phyto-sterols competitively inhibit cholesterol absorption in the gut and thereby can reduce cholesterol levels by 10% to 15%.