Automatic Transfer Switch, Bypass Isolation, Drawout, Contactor Type

Total Page:16

File Type:pdf, Size:1020Kb

Automatic Transfer Switch, Bypass Isolation, Drawout, Contactor Type Technical Paper Cutler-Hammer Effective: June 2001 Page 1 Supersedes SA 199 David D. Roybal, P.E. Automatic pages 1-12, dated January 1996 Cutler-Hammer Fellow Application Engineer Transfer Switches A Performance Comparison — Molded Case Switch Versus Contactor Type Table of Contents Page Part I: Abstract application for mechanically held About the Author . 1 devices is for lighting control, where Molded case switch type automatic using a latched device allows a user Part I: Abstract. 1 transfer switches with trip units and Part II: “Circuit Breaker” to avoid having to reset all contactors “contactor” type automatic transfer after a utility outage. Versus “Contactor” switches protected by circuit breakers Design Transfer Switches . 1 perform equally for various fault Transfer switches are also capable of Part III: Time-Current Coordination . 3 conditions. High withstand molded high endurance, but not nearly as great Part IV: Transfer Switch case switch type automatic transfer as that of a motor starting/lighting Performance During a Fault . 5 switches without trip units perform contactor. UL 1008 defines the mini- Part V: Conclusions . 8 exactly as “contactor” type automatic mum endurance of a transfer switch. Part VI: References . 8 transfer switches, except that “contac- This is detailed in Table 1. Both “con- tor” type designs have limited with- tactor” and “circuit breaker” designs stand capabilities. Such “contactor” meet these minimum UL 1008 require- About the Author type designs have potential problems ments as evidenced by their UL label. in applications with upstream power Some transfer switch manufacturers David D. Roybal received the Bachelor circuit breakers having short delay trip may publish endurance capabilities in of Science degree in electrical engi- characteristics. excess of these minimums, especially neering from Santa Clara University, for the larger ampacity units. Santa Clara, California, in 1969. Part II: “Circuit Breaker” Versus “Contactor” Design Transfer switches known as “contactor” He is a Fellow Application Engineer with Transfer Switches designs do not use motor starting/light- Cutler-Hammer in Lafayette, California. ing type contactors. Rather, “contactor” He previously was an engineer with A transfer switch is a device for trans- type transfer switches — along with Westinghouse for more than 24 years. ferring one or more load conductor “circuit breaker” type transfer switches connections from one power source — in fact use circuit breaker design Mr. Roybal is a Senior Member of the ➀ to another. Many engineers believe contacts, arc chutes, and arcing horns. Institute of Electrical and Electronics that there are two types of transfer Engineers (IEEE) and presently an Moreover, most “contactor” type switch designs, “contactor” designs transfer switch manufacturers pur- officer of the San Francisco Chapter and “circuit breaker” designs. There are of the Industry Applications Society. chase these parts from manufacturers indeed two different design concepts, of circuit breakers. Thus “contactor” He is a member of the National Fire but this terminology is misleading. type transfer switches actually owe their Protection Association (NFPA), the “Contactor” type transfer switches do design more to circuit breaker technol- National Society of Professional not use motor starting/lighting contac- ogy than to contactor technology. Engineers (NSPE), the International tors, and “circuit breaker” type transfer Association of Electrical Inspectors switches do not use circuit breakers. Transfer switches known as “circuit (IAEI), and the NEMA California Safety breaker” type use specially designed Contactors are NEMA devices designed switching devices that are typically Regulations Advisory Committee. for motor starting and lighting control He is a registered professional engi- molded case switches; circuit breakers which are capable of high endurance are an option. The contacts, arc chutes, neer in the State of California. The (long-life switching capabilities). Their Westinghouse Board of Directors and arcing horns are completely no-load and full-load mechanical opera- enclosed in an insulated housing, as awarded him the Westinghouse Order tions can number in the millions. They of Merit in 1993. He was a recipient they were originally designed to be. can be electrically held or mechanically The switching devices themselves of the IEEE Third Millennium Medal held devices. Electrically held devices in the year 2000. are further required to meet UL 1087 will drop out upon loss of control volt- (Molded Case Switches) or UL 489 age. A typical application is as part of (Molded Case Circuit Breakers) a motor starter. Mechanically held requirements, as well as UL 1008 devices have mechanical latches or (Automatic Transfer Switches) designs which inherently remain closed requirements. This means that “circuit upon loss of control voltage. A typical breaker” type transfer switches are Table 1 — ATS Endurance (UL 1008 Table 30.2) Switch Ampere Rate of Number of Cycles of Operations Rating Operation With Current Without Current Total 0–300 1 per minute 6000 – 6000 301–400 1 per minute 4000 – 4000 401–800 1 per minute 2000 1000 3000 801–1600 1 per 2 minutes 1500 1500 3000 ➀ NEMA ICS 10-1993, AC Automatic Transfer Switches. 1601 and above 1 per 4 minutes 1000 2000 3000 TP.15A.01.T.E Technical Paper Automatic Cutler-Hammer Page 2 Effective: June 2001 Transfer Switches held to a more rigorous testing stan- current protection and those using normally have much higher withstand dard than “contactor” type switches. molded case switches without over- and endurance ratings than the The main contact assemblies in “circuit current protection. Smaller ampacity “contactor” type transfer switches. breaker” type transfer switches are designs use molded case switches with subject to periodic UL 489 and UL 1087 fixed instantaneous trip units set high to “Contactor” type transfer switches and follow-up testing versus the one-time- allow the maximum withstand of the “circuit breaker” type transfer switches only UL 1008 design test for “contac- device. Other molded case switches, using molded case switches with tor” type automatic transfer switches. such as the Cutler-Hammer Type SPB instantaneous trip elements perform Typically, the switching devices in a Insulated Case Switch, can be provided identically when applied in systems “circuit breaker” type transfer switch without trip units. These are switches with molded case circuit breakers. are oversized for the ampacity of the that have extremely high withstand and When the upstream breaker is a power transfer switch. For example, an 800 endurance ratings, often greater than circuit breaker with no instantaneous ampere “circuit breaker” type transfer those of a comparable “contactor” type trip element, it may have a short delay switch uses 1200 ampere switching switch. Typical ratings are shown in time setting for coordination with other devices, as shown in Table 2. Thus Table 3. As an alternate design, the devices under high fault conditions. the contacts used in a “circuit breaker” transfer switches can be provided When a downstream fault occurs, the type transfer switch are likely to be with molded case switches having power circuit breaker can delay tripping larger than the contacts used in a overcurrent and ground fault trip units. in order to allow the downstream “contactor” type of equal rating These are used where integral over- device to selectively clear the fault. because of this oversizing. current protection is desired, such as in service entrance applications. If the power circuit breaker short delay There are actually two types of “circuit time setting is set high, fault current breaker” transfer switch designs: those Since “contactor” type transfer may flow in excess of the limited time using molded case switches with over- switches do not use contactors and and current withstand ratings of a both “contactor” and “circuit breaker” “contactor” type transfer switch. A Table 2 — Molded Case Switch ATS type automatic transfer switches use “circuit breaker” type transfer switch With Instantaneous Trip Elements circuit breaker parts, what is their using molded case switches without difference in performance? Under UL 1008 UL 1087/UL 489 UL 1087/UL trip units can be selected to withstand Switch Cutler-Hammer 489 Frame most downstream fault conditions, the short delay time, while a transfer Ampere Molded Case Frame Ampacity both designs will perform identically, switch design using molded case Rating i.e., the upstream breaker will trip and switches with instantaneous trip ele- the switch logic will initiate the trans- ments would merely trip and reset. In 100 F 150 fer sequence to the alternate source. 150 K 225 some situations the high-magnitude 150 K 400 “Contactor” type transfer switches fault may cause a drop in voltage which could initiate a transfer 225 K 400 and “circuit breaker” type transfer switches using molded case switches sequence for either the “contactor” 300 K 400 type transfer switch or the “circuit 400 L 600 without trip units perform identically under all circumstances. However, it breaker” type transfer switch. When 600 M 800 should be noted that these “circuit this occurs, the transfer switch will 800 N 1200 breaker” type transfer switch designs attempt to interrupt the fault current. 1000 N 1200 The engineer may find that the limited Table 3 — Transfer Switch Withstand Ratings (Time and Current) Transfer UL 1008 3 Cycle Rating Extended Rating Switch
Recommended publications
  • Substation Catalog
    Substation Catalog 618.797.5000 | TURNER ELECTRIC | turnerswitch.com | January 2016 Page 2 618.797.5000 | TURNER ELECTRIC | turnerswitch.com | January 2016 TABLE OF CONTENTS TMX Aluminum Vertical Break Switches (15kV through 345kV) ............................................................................................. 4 TMK40A Aluminum Vertical Break Switches (345kV through 765kV) ......................................................................................... 9 TSB Aluminum Side Break Switches (15kV through 161kV) ............................................................................................... 11 1D Copper Side Break Switches (15kV through 161kV)................................. 15 TDEB Aluminum Double End Break Switches (34kV through 345kV) .......................................................................................... 19 TCV2 Aluminum Center Break (V-Style) Switches (15kV through 161kV) ............................................................................................... 23 TCB2 Aluminum Center Break Switches (15kV through 161kV) ............................................................................................... 27 TECO-Rupter Vacuum Interrupters (15kV through 230kV) ............................................................................................ 29 Motor Operators .................................................................................................................. 33 618.797.5000 | TURNER ELECTRIC | turnerswitch.com | January 2016 Page 3 TMX VERTICAL
    [Show full text]
  • High Voltage Products the Complete Portfolio from One Source
    High Voltage Products The complete portfolio from one source www.siemens.com/energy Answers for energy. 3 1 2 6 3 7 1 2 7 3 4 5 4 2 3 5 6 1 6 1 Bushings 4 Disconnectors 7 Long Rod Insulators 2 Arresters 5 Instrument Transformers 3 Circuit Breakers 6 Reactors Content Foreword 05 Coil Products (HV) 48 – 51 Circuit Breakers and Disconnectors 06 – 29 Bushings 52 – 55 Surge Arresters 30 – 35 Long Rod Insulators 56 – 61 Instrument Transformers 36 – 47 Contact 63 4 Foreword High-voltage products and devices are the basis for an Our specialist subsidiaries Hochspannungsgeräte GmbH, efficient, high-performance, safe and reliable energy Troisdorf (HSP) and Trench Electric are global leaders in transmission. Our high-voltage products meet your their field: HSP is a leading company in the production requirements in terms of low life cycle costs with opti- of bushings. The Trench Group is a worldwide leading mum availability in continuous operation. They have a manufacturer of high voltage products such as instrument long service life and are also extremely earthquake-resis- transformers, bushings and reactors. This includes a wide tant and weatherproof. range of bushings products for Power Transformers, Gas Insulated Substations, Breakers, Generators, Buildings, The technology of our products sets international stan- Test Equipment, Rail Road Systems, HVDC and other dards. We ensure the high quality of the high-voltage specialty applications. products through optimized production processes, con- tinuous product development and a certified quality management system. This brochure showcases our portfolio of high-voltage products and devices. The portfolio comprises circuit breakers and disconnectors, surge arresters, instrument transformers, coil products, and last but not least bush- ings.
    [Show full text]
  • What Is Corona Effect
    What is Corona Effect One of the phenomena associated with all energized electrical devices, including high- voltage transmission lines, is corona. The localized electric field near a conductor can be sufficiently concentrated to ionize air close to the conductors. This can result in a partial discharge of electrical energy called a corona discharge, or corona. What is Corona? • Electric transmission lines can generate a small amount of sound energy as a result of corona. • Corona is a phenomenon associated with all transmission lines. Under certain conditions, the localized electric field near energized components and conductors can produce a tiny electric discharge or corona that causes the surrounding air molecules to ionize, or undergo a slight localized change of electric charge. • Utility companies try to reduce the amount of corona because in addition to the low levels of noise that result, corona is a power loss, and in extreme cases, it can damage system components over time. • Corona occurs on all types of transmission lines, but it becomes more noticeable at higher voltages (345 kV and higher). Under fair weather conditions, the audible noise from corona is minor and rarely noticed. • During wet and humid conditions, water drops collect on the conductors and increase corona activity. Under these conditions, a crackling or humming sound may be heard in the immediate vicinity of the line. • Corona results in a power loss. Power losses like corona result in operating inefficiencies and increase the cost of service for all ratepayers; a major concern in transmission line design is the reduction of losses. Source of Corona: • The amount of corona produced by a transmission line is a function of the voltage of the line, the diameter of the conductors, the locations of the conductors in relation to each other, the elevation of the line above sea level, the condition of the conductors and hardware, and the local weather conditions.
    [Show full text]
  • IMP/007/011 Version 1.1 Date of Issue Aug 2006 Page 1 of 11
    Document Reference IMP/007/011 Version 1.1 Date of Issue Aug 2006 Page 1 of 11 IMP/007/011 - Code of Practice for the Application of Lightning Protection 1.0 Purpose The purpose of this document is to ensure the company achieves its requirements with respect to the Electricity Act 1989 (as amended) (the Act), the Electricity Safety, Quality, and Continuity (ESQC) Regulations 2002, the Electricity at Work (EAW) Regulations 1989, the Distribution Licences and The Distribution Code, by laying out the way in which Northern Powergrid will develop efficient, co-ordinated and economical networks. This document specifies the type of lightning protection and the locations at which it is to be installed on the Northern Powergrid 11 kV, 20kV, 33 kV, 66 kV and 132kV networks. This document supersedes the following documents, all copies of which should be destroyed. There was no equivalent document in Northern Powergrid (Northeast Ltd) Ref Version Title DSS/007/011 Code of Practice for the Application of Surge Arresters 2.0 Scope This document covers the requirements, application, and installation of lightning protection on 11kV, 20kV, 33kV, 66kV and 132kV networks in Northern Powergrid; it is not intended for this policy to be applied retrospectively with the exception of locations suffering from poor performance under lightning conditions. All new networks shall be equipped with Lightning Protection in accordance with this Document. 3.0 Policy 3.1 Assessment of Relevant Drivers The key internal business drivers relating to Lightning Protection policy are: Customer Service This Code of Practice contributes toward quality of supply to customers by defining the application of lightning protection so as to minimise the damage to equipment and prevent interruption of supply.
    [Show full text]
  • Improved Lightning Performance for 132 Kv OHL
    Improved Lightning Performance for 132 kV OHL Master’s thesis in Electric Power Engineering Tomas Ingmarson Johan Stelin Department of Materials and Manufacturing Technology CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2017 Master’s thesis 2017:195 Improved Lightning Performance for 132 kV OHL TOMAS INGMARSON JOHAN STELIN Department of Materials and Manufacturing Technology Division of High Voltage Engineering Chalmers University of Technology Gothenburg, Sweden 2017 Improved Lightning Performance for 132 kV OHL TOMAS INGMARSON JOHAN STELIN © TOMAS INGMARSON, JOHAN STELIN, 2017. Supervisor: Per Norberg, Vattenfall Eldistribution AB Examiner: Jörgen Blennow, Department of Materials and Manufacturing Technol- ogy Master’s Thesis 2017:195 Department of Materials and Manufacturing Technology Division of High Voltage Engineering Chalmers University of Technology SE-412 96 Gothenburg Telephone +46 31 772 1000 Cover: An old 132 kV wood portal tower without arcing horns and with two shield wires. Typeset in LATEX Gothenburg, Sweden 2017 iv Improved Lighting Performance for 132 kV OHL TOMAS INGMARSON JOHAN STELIN Department of Materials and Manufacturing Technology Chalmers University of Technology Abstract Lightning strokes to transmission lines causes a majority of the power quality issues that are so severe that sensitive industrial loads are disturbed. Historically Vatten- fall concluded that it is too expensive to use shield wires for the 132 kV grid due to the high soil resistivity in Sweden. Today the situation is different with sensitive industrial loads and the current Vattenfall standard is to build portal tower with one shield wire. The shield wire is however not used to reduce the amount of lightning faults, it is used to ground the cross arm and reduce the amount of short circuits.
    [Show full text]
  • Design and Analysis of Extra High Voltage Non-Ceramic Insulator by Finite Element Method
    World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering Vol:13, No:5, 2019 Design and Analysis of Extra High Voltage Non- Ceramic Insulator by Finite Element Method M. Nageswara Rao, V. S. N. K. Chaitanya, P. Pratyusha earth side which will make the electric field distribution non Abstract—High voltage insulator has to withstand sever uniform in the absence of grading ring. Grading ring will electrical stresses. Higher electrical stresses lead to erosion of the make the electric field distribution uniform by varying insulator surface. Degradation of insulating properties leads to parameters [1]. Electric field is analyzed for sphere to plane flashover and in some extreme cases it may cause to puncture. For gap arrangement with CSM and methods of moment. Results analyzing these electrical stresses and implement necessary actions to diminish the electrical stresses, numerical methods are best. By proved that CSM is better and accurate compared to methods minimizing the electrical stresses, reliability of the power system will of moment [2]. Electric fields of 11 kV and 33 kV silicone improve. In this paper electric field intensity at critical regions of 400 composite insulators are analyzed for various geometrical kV silicone composite insulator is analyzed using finite element configurations as per International Electro-technical method. Insulator is designed using FEMM-2D software package. Commission (IEC) standards by FEM [3]-[6]. With the help of Electric Field Analysis (EFA) results are analyzed for five cases i.e., EFA results, best geometrical configurations are identified. only insulator, insulator with two sides arcing horn, High Voltage (HV) end grading ring, grading ring-arcing horn arrangement and two EFA has been carried out for 400 kV Silicone Composite sides grading ring.
    [Show full text]
  • Comparison of Class 1 Surge Protective Devices
    Information and Communication Technology Technical Comparison of Class 1 surge protective devices by Holger Heckler, Phoenix Contact, Germany and John Ortika, Phoenix Contact, Australia Lightning current arrestors for low-voltage power systems are usually designed and tested only for use in AC power systems. The performance and operational behaviour of a surge protective device, connected to an AC power system, can be completely different to the performance and operational behaviour of the same surge protective device connected to a DC power system. The requirements and tests for surge of surge protective devices for DC power l Max. short-circuit current of one DC power protective devices (SPDs), connected to low systems, have been carried out with a supply: 12,5 A voltage power systems, are described in the specific application in mind, namely, in this l Max. short-circuit current of four DC power international standards IEC 61643-1 [1] and case, the protection of mobile phone base supplies: 50,0 A EN 61643-11 [2]. The scope of the stations with remote radio heads (RRH). IEC 61643-1 includes SPDs for AC applications The investigation, which includes test with a rated voltage of up to 1000 V AC and In this application four DC power supplies procedures for DC arresters has been derived SPDs for DC applications with a rated voltage (Delta power system DPS600B) are from the well-known test procedures for AC of up to 1500 V DC. Unfortunately no test connected in parallel. Consequently, the arresters. The operational behaviour of four DC power supplies, connected in parallel, procedures for the testing of SPDs connected following parameters are of importance to has been taken into consideration as well.
    [Show full text]
  • CHAPTER-8 SWITCHYARD EQUIPMENT- HV Bus Bars
    CHAPTER-8 SWITCHYARD EQUIPMENT- HV Bus Bars, Switchyard Structures, Isolating Switches, Current Transformers, Voltage Transformers, Lightning Arresters 8.1 Introduction Outdoor step up substations at hydroelectric stations are provided to step up power at generated voltage generally for interconnection with the grid to evacuate power. Generation voltage varies from 415 volts to 11 kV (or higher) and step up voltage of small hydro up to 5 MW capacity may not exceed 36 kV. In case of large hydro stations the step up voltage may be up to 420 kV. Switchyard equipment comprises of main equipment, ancillary equipment and switchyard structures. Step up transformers and circuit breakers are discussed in Section 6 & 7. Insulators switchyard structures, isolating switches current and voltage transformers and lightning arrestors are discussed in this chapter. Auxiliary equipment for switchyards is common with powerhouse auxiliary and discussed in Section II (Chapter 4 & 5). 8.1.1 Standards and Codes Relevant National Standards (Latest edition) are as follows: IS: 9920 Part I to IV – Alternating current switches for rated voltages above 1000 volts and less than 52 kV IS: 9921Part 1 to 5 – Alternating currents disconnectors (isolators) and earthing switches rating, design, construction, tests etc. IS: 1893 – Criteria for Earthquake resistance design of structures IS: 2705 Part 1 to 4 – Current transformer IS: 3156 Part 1 to 4 – voltage transformer IS: 3070 part 1 to 3 – Lightning arrestors IS: 2544 – Porcelain insulators for system above 1000 V IS: 5350 – Part III – post insulator units for systems greater than 1000 V IS: 5621 – Hollow Insulators for use in electrical equipment IS: 5556 – Serrated lock washers – specification IS: 3716 – Application guide for insulation co-ordination IS: 2165 – Phase to earth insulation co-ordination 8.2.
    [Show full text]
  • Insulation Coordination of Arcing Horns on HVDC Electrode Lines: Protection Performance Evaluation, Influence Factors and Improvement Method
    energies Article Insulation Coordination of Arcing Horns on HVDC Electrode Lines: Protection Performance Evaluation, Influence Factors and Improvement Method Xiandong Li 1,2,3,* ID , Hua Li 1,2,3,*, Yi Liu 1,2,3 and Fuchang Lin 1,2,3 1 State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; [email protected] (Y.L.); [email protected] (F.L.) 2 School of Electrical and Electronic Engineering, Huazhong University of Science & Technology, Wuhan 430074, China 3 Key Laboratory of Pulsed Power Technology (Huazhong University of Science and Technology), Ministry of Education, Wuhan 430074, China * Correspondence: [email protected] (X.L.); [email protected] (H.L.) Received: 19 January 2018; Accepted: 11 February 2018; Published: 13 February 2018 Abstract: Arcing horns are widely used in high voltage overhead lines to protect insulator strings from being destroyed by the free burning arcs caused by lightening faults. In this paper, we focus on the insulation coordination of arcing horns on the electrode lines of a 5000 MW, ±800 kV high voltage direct current (HVDC) system. The protection performance of arcing horns are determined by the characteristics of not only the external system but also the fault arc. Therefore, the behaviors and characteristics of long free burning arcs are investigated by the experiments at first. In order to evaluate the protection performance of arcing horns, the static stability criterion U-I characteristic method is introduced. The influence factors on the protection performance of arcing horns are analyzed theoretically. Finally, the improvement methods for the protection performance of arcing horns are proposed, and the diversified configuration strategy of arcing horns is recommended for cost saving.
    [Show full text]
  • High-Voltage Products Are the Physical Backbone for Reliable, Safe, Environmentally-Friendly and Economical Power Transmission
    High-Voltage Products High Voltage Products Reliable products for all customer requirements siemens.com/energy-management Content Foreword ................................................................5 Circuit-Breakers ............................................... 6 – 23 Disconnectors ............................................... 24 – 35 Surge Arresters ............................................. 36 – 43 Instrument Transformers ............................... 48 – 67 Coil Products ................................................. 68 – 75 Bushings ....................................................... 76 – 83 Gas-Insulated Switchgear............................... 84 – 97 Silicone Long Rod Insulators ........................ 98 – 107 Service ...................................................... 108 – 111 3 Foreword Energy! The elixir of life on our globe. Energy demand will increase by over 30% by 2040. Our global society depends on a safe, clean and sustainable energy supply. Generating electrical power and its transmission and distribution will be the key to achieving this ambitious task. The huge power demand in cities and industries requires effective power plants, as well as an efficient transmission of electrical power at high-voltage levels. High-voltage products are the physical backbone for reliable, safe, environmentally-friendly and economical power transmission. This brochure showcases our comprehensive portfolio of high-voltage products: circuit-breakers, disconnectors and earthing switches, surge arresters, instrument
    [Show full text]
  • Power Switches Catalog
    POWER SWITCHES CATALOG USCO POWER SWITCHES 8100 Churchill Ave., Leeds, Alabama 35094 Telephone (573) 682-5521 Facsimile (573) 682-8714 www.uscopower.com [email protected] www.hubbellpowersystems.com NOTE: Because Hubbell has a policy of continuous product improvement, we reserve the right to change design and specifications without notice. ©Copyright 2013 Hubbell Incorporated • 210 North Allen Street • Centralia, MO 65240 Bulletin USCO-6 2 G E N E R A L These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation, or maintenance. I Should further information be desired or should particular problems arise which are not covered N sufficiently for the purchaser’s purposes, the matter should be referred to your USCO representa- F tive, or direct to the USCO factory. O R M A T UNPACKING INSTRUCTIONS I O N ALL GANG OPERATED SWITCHES (Grounding Switch Not Included) Each switch consists of three or more packaged items; the control parts box, the switch units, a bundle of pipe and the insulators when not assembled to the switch. Check packing list, attached to the switch crate, to determine if all material has been received. Check insulators carefully for cracked or broken por- celain. Check all other materials for possible shipment damage or loss. Report any claims to the carrier. 8.3 thru 48.3kV switch units are shipped completely assembled with insulators unless specified otherwise by the purchaser. 72.5kV thru 245kV switch units are shipped assembled, less insulators, unless specified by the purchaser or switch construction necessitates the complete assembly.
    [Show full text]
  • In the Early Power Systems Were Mainly Neutral Ungrounded Due to the Fact That the First Ground Fault Did Not Require the Tripping of the System
    UNIT I INTRODUCTION Introduction: In the early power systems were mainly Neutral ungrounded due to the fact that the first ground fault did not require the tripping of the system. An unscheduled shutdown on the first ground fault was particularly undesirable for continuous process industries. These power systems required ground detection systems, but locating the fault often proved difficult. Although achieving the initial goal, the ungrounded system provided no control of transient over-voltages. A capacitive coupling exists between the system conductors and ground in a typical distribution system. As a result, this series resonant L-C circuit can create over- voltages well in excess of line-to-line voltage when subjected to repetitive re-strikes of one phase to ground. This in turn, reduces insulation life resulting in possible equipment failure. Neutral grounding systems are similar to fuses in that they do nothing until something in the system goes wrong. Then, like fuses, they protect personnel and equipment from damage. “Damage comes from two factors, how long the fault lasts Iandmp ohowrtanlacregeoftheNeufatultralcGurroreundnt iis.n g:Ground relays trip breakers and limit how long a fault lasts and Neutral grounding resistors limit how large the fault current is”. There are many neutral grounding options available for both Low and Medium voltage power systems. The neutral points of transformers, generators and rotating machinery to the earth ground network provides a reference point of zero volts. This protective measure offers many advantages over an ungrounded system, like, 1. Reduced magnitude of transient over voltages 2. Simplified ground fault location 3. Improved system and equipment fault protection 4.
    [Show full text]