1. Introducción General ------1 1.1

Total Page:16

File Type:pdf, Size:1020Kb

1. Introducción General ------1 1.1 Caracterización de la respuesta a sequía e identificación de genes asociados al uso eficiente del agua (UEA) en portainjertos Prunus spp. Beatriz Bielsa Pérez http ://hdl.handle.net/10803/460825 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. TESI DOCTORAL Caracterización de la respuesta a sequía e identificación de genes asociados al uso eficiente del agua (UEA) en portainjertos Prunus spp. Beatriz Bielsa Pérez Memòria presentada per optar al grau de Doctor per la Universitat de Lleida Programa de Doctorat en Ciència i Tecnologia Agrària i Alimentària Director/a Dra. María José Rubio Cabetas Tutor/a Dra. Maria Pilar Muñoz Odina 2017 Tesis Doctoral realizada en la Unidad de Hortofruticultura del Centro de Investigación de Tecnología Agroalimentaria de Aragón (CITA). Dña. María José Rubio Cabetas, Dra. en Biología, Investigadora en el Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA) y Dña. Maria Pilar Muñoz Odina, Dra. en Biología, Profesora titular en la Universidat de Lleida, Investigadora en el Departamento de Producción Vegetal y Ciencia Forestal de dicha Universidad, CERTIFICAN Que la tesis doctoral titulada “Caracterización de la respuesta a sequía e identificación de genes asociados al uso eficiente del agua (UEA) en portainjertos Prunus spp.” ha sido realizada íntegramente por la Ingeniera Agrónoma Dña. Beatriz Bielsa Pérez bajo nuestra dirección en dicha Unidad de Hortofruticultura, habiéndose cumplido todos los objetivos planteados, reúne las condiciones requeridas para optar al título de Doctor. Zaragoza, Septiembre de 2017 María José Rubio Cabetas Maria Pilar Muñoz Odina AGRADECIMIENTOS Durante todos estos años han sido muchas las personas e instituciones que han colaborado tanto personal como profesionalmente en la realización de esta tesis. Seguro que me dejo gente en el tintero, es inevitable. Han sido muchos años y mucho que agradecer. Por eso, gracias a todos. En primer lugar, agradecer al Instituto Nacional de Investigaciones Agrarias (INIA), por concederme la beca FPI con la que se ha financiado esta tesis; y al Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), por haberme dejado llevar a cabo en sus instalaciones todos los trabajos relacionados con esta tesis. Así mismo, agradecer también al Grupo Consolidado A12 (DGA) por la financiación concedida para realizar trabajos relacionados con esta tesis. Agradecer a la Dra. Carole Bassett, su acogida en su laboratorio del Appalachian Fruit Research Station, USDA-ARS, Kearneysville, WV, EEUU. Por ser una gran maestra y hacerme tan fácil mi estancia en Shepherdstown, WV. Al Dr. Michael Wisniewski, por su cálida acogida y al Dr. Michel Glenn, por sus enseñanzas sobre fisiología. También quisiera agradecer al Dr, Thomas M. Gradziel, por darme la oportunidad de poder trabajar en el Department of Plant Sciences de la Universidad de California, Davis, CA, EEUU. A la Dra. Pilar Muñoz Odina, por su labor como Tutora de esta tesis. Al Dr. Jesús García Brunton, por sus buenos consejos y su gran ayuda en los trabajos realizados en Murcia. No quisiera olvidarme del Dr. Pascual Romero Azorín, por sus consejos y enseñanzas con el manejo del LI-COR. A la Dra. Mª Ángeles Forner, por su colaboración en el procesado de las hojas de melocotonero. A Mª Ángeles Sanz, por su gran ayuda en los últimos momentos, aun cuando la situación no era la más adecuada. A Carmen Leida, por sus enseñanzas con el manejo de la Real Time. Al Dr. Amit Dhingra y a Seanna Hewitt por su ayuda y colaboración en el manejo de los datos relacionados con el transcriptoma de ‘Garnem’. Al Dr. Rafael Socias, por su ayuda y sabios consejos aportados a lo largo de estos años. A Pepe Jaime, por toda la ayuda recibida en los numerosos ensayos que hemos hecho juntos. Muchas gracias por hacerme esos ratos más amenos y menos tediosos. Y José Miguel, me llevo muy buenos consejos, sobre todo en el terreno personal. Gracias por todas esas palabras de ánimo. A Ana Pina, por sus buenos y acertados consejos. Pero principalmente por las risas. ¡Muchas risas! A Mayte, por su complicidad en todo este tiempo. Agradecer a toda la gente de la Unidad de Hortofruticultura la ayuda, consejos y palabras de ánimo durante estos años. A Tere, Pilar Tomey, Rosa, Olga, José Ángel, Mari, Quique, Manu, Carmen Villalba, Ana Garcés, Aurora, Ana María… Particularmente, a Pilar Bergua, por su gran profesionalidad y paciencia, siempre resolviéndome todos mis problemillas administrativos. A los que conmigo han formado parte de la sala de becarios y los que han venido después. En especial, a Erica, gran compañera; a Arantxa, ¡mucho ánimo que ya te queda poquito!; a Alejandro, que ya con una mirada sabemos de qué hablamos, ¡…grande que eres! A Ángel, por su ayuda desinteresada durante estos años. Pero no solo eso, sino también por ser un buen compañero de piso y mejor anfitrión. Gracias por estar siempre pendiente de mí y de enseñarme magníficos lugares en California. ¡Espero que a partir de entonces ninguna cafetera se te haya resistido! Muchas gracias. A Lourdes, compañeras ya desde la carrera y ahora más amiga si cabe. ¡Enhorabuena por esa cosita linda! ¿Ves?, ¡al final dabas a luz tú antes que yo! A la Dra. Mª José Rubio, por brindarme la oportunidad de llevar a cabo esta tesis bajo su dirección, pero no solo eso. También por su dedicación y su apoyo. Y principalmente, por la confianza que depositó en mí ese mes de Octubre de 2005 cuando me presenté bien nerviosa en su despacho para que me dirigiese el proyecto final de carrera de ITA. Desde entonces no he hecho más que aprender y aprender, en lo profesional, pero sobre todo en lo personal. Gracias por todo. A Oreto, poco que decir que no te haya dicho ya antes, Amiga. Que eres maravilla. Que eres lo mejor que me llevo de estos años. ¡Que te quiero! A mis primas: Rosa, Davinia, Sole y Tifón. ¡Qué gran familia con encanto somos, leche! La madre superiora nos guía. Jaja… Muchísimas gracias por estar siempre ahí. ¡Os llevo conmigo siempre, hermanas! A Isabel, mil gracias por formar parte de mi vida, por tu apoyo en los momentos duros y la felicidad que transmites en los buenos. ¿Qué más puedo pedir que tenerte a mi lado? Héctor, espero que nunca pierdas tu afición fotográfica con la que nos haces disfrutar tanto. Gracias por tu pequeña, pero no por ello, menos importante aportación. A mi familia. A mi hermano, por estar siempre ahí y enseñarme desde pequeñita a ser fuerte. A mis padres, por todo, principalmente por su paciencia y gran ayuda. A ti, que aun apareciendo en el último acto, has pasado de un papel figurante a protagonista de mi vida. Gracias por apoyarme durante este último año, el más duro. No ha sido nada fácil, pero tú has hecho que lo fuera. Gracias por quererme como soy, con mis locuras, mis obsesiones… Gracias por querer compartir tu vida con la mía.
Recommended publications
  • Identification of Potential Metabolites Mediating Bird's Selective Feeding
    Hindawi BioMed Research International Volume 2019, Article ID 1395480, 8 pages https://doi.org/10.1155/2019/1395480 Research Article Identification of Potential Metabolites Mediating Bird’s Selective Feeding on Prunus mira Flowers Shanshan Zhang,1,2 Hong Ying,1,2 Gesang Pingcuo,1,2 Shuo Wang,1,2 Fan Zhao,1,2 Yongning Cui,1,2 Jian Shi,3 Hu Zeng,3 and Xiuli Zeng 1,2 e Ministry of Agriculture of Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station, Lhasa, Tibet , China Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet , China Wuhan Metware Biotechnology Co., Ltd, Wuhan , China Correspondence should be addressed to Xiuli Zeng; zeng [email protected] Received 15 April 2019; Accepted 4 June 2019; Published 23 June 2019 Academic Editor: Graziano Pesole Copyright © 2019 Shanshan Zhang et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In peach orchards, birds severely damage fowers during blossom season, decreasing the fruit yield potential. However, the wild peach species Prunus mira shows intraspecifc variations of bird damage, indicating that some of the wild trees have developed strategies to avert bird foraging. Motivated by this observation, we formulated the present study to identify the potential fower metabolites mediating the bird’s selective feeding behavior in P. mira fowers. Te birds’ preferred (FG) and avoided (BFT) fowers were collected from wild P. mira trees at three diferent locations, and their metabolite contents were detected, quantifed, and compared.
    [Show full text]
  • Characterization of Genetic Diversity and Relationship in Almond Genotypes by RAPD and ISSR Markers in Sulaimani Governorate - 1739
    Mahood - Hama-Salih: Characterization of genetic diversity and relationship in almond genotypes by RAPD and ISSR markers in Sulaimani governorate - 1739 - CHARACTERIZATION OF GENETIC DIVERSITY AND RELATIONSHIP IN ALMOND (PRUNUS DULCIS [MILL.] D.A. WEBB.) GENOTYPES BY RAPD AND ISSR MARKERS IN SULAIMANI GOVERNORATE MAHOOD, A. M. R.* – HAMA-SALIH, F. M. Horticulture Department, College of Agricultural engineering Sciences, University of Sulaimani Sulaimani-Kurdistan Region, Iraq *Corresponding author e-mail: [email protected]; phone: +96-4770-1532-547 (Received 13th Oct 2019; accepted 21st Jan 2020) Abstract. Genetic diversity of 38 almond local genotypes was investigated using RADP and ISSR markers with the analysis of nut morphology. Samples were taken from five locations for this study, including Sharbazher, Mergapan, Qaradakh, Barznja, and Hawraman. Almond nuts width, length and thickness were studied and their mean values were observed to range between 16.18-27.21 mm, 24.18-41.07 mm and 11.49-16.81 mm, respectively. Polymorphic bands of mean values were 9.5 for random amplified polymorphic DNA (RAPD) and 8 for inter-simple sequence repeat (ISSR). The PIC values were recorded for RAPD primes to range between 0.77 to 0.97 and those for ISSR primers were also verified between 0.36 to 0.97. Based on Jaccard similarity coefficients, the genetic distances were recorded between 0.32 (B-G3 vs. B-G4) (M-G2 vs. M-G1) to 0.75 (H-G5 vs. Q-G1) and all genotypes were grouped into 3 major clusters (A, B and C) with a mean dissimilarity 0.535 for 20 RADP markers.
    [Show full text]
  • Genetic Diversity of Wild Peach (Prunus Mira Koehne Kov Et. Kpst
    HORTSCIENCE 49(8):1017–1022. 2014. species is mainly distributed within the alti- tude range of 2500 to 3600 m, where the mean annual temperature is approximate 6 to Genetic Diversity of Wild Peach 13 °C and the soil texture is typically sandy, semisandy, or loam soil (Guo et al., 2006). (Prunus mira Koehne kov et. kpst) from Therefore, to adapt and thrive in this harsh environment, it has developed characteristics Different Altitudes in the Tibetan such as a tolerance to drought conditions and cold temperatures, resistance to disease, and infertility (Wang et al., 1997). Accordingly, Plateau by Pollen Morphous and RAPD P. mira has attracted considerable attention and should be used as a gene source to develop Markers new resistant peach species. Additionally, because of fast-growing, exuberant leafy Fachun Guan branches and the presence of luxuriant blos- Agriculture and Animal Husbandry College, Tibet University, Linzhi, Tibet soms, P. mira has been used as an ornamental 860000, P.R. China; and the Institute of Tibetan Plateau Research, Chinese plant (Tan et al., 2001). To date, many of Academy of Sciences, Beijing 100101, China studies of this remarkable plant have focused on morphological variability, multiplication, Shiping Wang and the physiology of P. mira. However, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing there are few detailed studies on the genetic 100101, China diversity of P. mira based on pollen mor- phology or the molecular markers. Rongqin Li Generally, the pollen features of a plant Agriculture and Animal Husbandry College, Tibet University, Linzhi, Tibet can be used as markers of inheritance in taxonomic researches.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • Population Structure and Genetic Diversity of Prunus Scoparia in Iran
    Ann. Bot. Fennici 50: 327–336 ISSN 0003-3847 (print) ISSN 1797-2442 (online) Helsinki 5 September 2013 © Finnish Zoological and Botanical Publishing Board 2013 Population structure and genetic diversity of Prunus scoparia in Iran Kazem Mehdigholi1,2,**, Masoud Sheidai2,3,*, Vahid Niknam1,2, Farideh Attar1,2 & Zahra Noormohammadi4 1) School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran (**corresponding author’s e-mail: [email protected]) 2) Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran (*corresponding author’s e-mail: [email protected]) 3) Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran 4) Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran Received 2 Aug. 2012, final version received 14 Aug. 2013, accepted 27 Mar. 2013 Mehdigholi, K., Sheidai, M., Niknam, V., Attar, F. & Noormohammadi, Z. 2013: Population structure and genetic diversity of Prunus scoparia in Iran. — Ann. Bot. Fennici 50: 327–336. Over 30 Prunus species and taxa below the rank of species are known from Iran. These wild taxa provide an enlarged gene pool and may be considered a valuable germ- plasm source for breeding cultivated almonds. The present study is a genetic diversity analysis of six P. scoparia populations using six nuclear SSR markers. We also studied correlations between the population genetic differences, morphological differences and geographical distance. All six SSR primers produced amplification. The highest number of alleles occurred in the Fars and Lorestan populations, with 121 and 114 alleles, respectively. Some of the alleles were shared by all populations, while some others were specific to one population only.
    [Show full text]
  • Seed Germination and Seedling Establishment of Some Wild Almond Species
    African Journal of Biotechnology Vol. 10(40), pp. 7780-7786, 1 August, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB10.1064 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Seed germination and seedling establishment of some wild almond species Alireza Rahemi 1* , Toktam Taghavi 2, Reza Fatahi 2, Ali Ebadi 2, Darab Hassani 3, José Chaparro 4 and Thomas Gradziel 5 1Department of Horticultural Science, Azad University (Science and Research Branch), Tehran, Iran. 2Department of Horticultural Science, University of Tehran, Karaj, Iran. 3Department of Horticulture, Seed and Plant Improvement Institute, Karaj, Iran. 4Department of Horticultural Science, University of Florida, Gainesville, USA. 5 Department of Plant Sciences, University of California, Davis. USA. Accepted 20 January, 2011 Wild almond species are important genetic resources for resistance to unsuitable condition, especially drought stress. They have been used traditionally as rootstocks in some areas of Iran. So far, 21 wild almond species and 7 inter species hybrids have been identified in Iran. To study seed germination and seedling establishment of some of these species, three separate experiments were designed. In the first experiment, the application of gibberellic acid (GA3) (0, 250, 500 and 750 ppm) for 24 h was studied on germination characteristics of four wild almond accessions after stratification at 5 ± 0.5°C in Perlite media. Germination percentage, index vigor and root initiation factors were different in almond accessions, but were not affected by hormonal treatments. In the second experiment, seeds of another six wild almond accessions were stratified to compare their germination ability. Germination percentage, index vigor and root initiation were different among accessions significantly.
    [Show full text]
  • Genetic Diversity, Population Structure, and Relationships Among Wild
    Adv. Hort. Sci., 2020 34(3): 287­300 DOI: 10.13128/ahsc­7415 Genetic diversity, population structure, AHS and relationships among wild and Advances in Horticultural Science domesticated almond Prunus( spp.) germplasms revealed by ISSR markers S. Rahimi­Dvin 1, A. Gharaghani 1, 2 (*), A. Pourkhaloee 3 1 Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran. 2 Drought Research Center, College of Agriculture, Shiraz University, Shiraz, Iran. 3 Department of Horticultural Science, College of Agriculture, Vali‐e‐Asr University of Rafsanjan, Rafsanjan, Iran. Key words: cluster analysis, gene diversity, gene flow, population structure, wild almond. (*) Corresponding author: [email protected] Abstract: The use of diverse almond genetic resources to expand the genetic bases of commercial cultivars is important for almond breeders. Iran is within Citation: the center of origin for almond and enjoys a huge diversity of wild species and RAHIMI­DVIN S., GHARAGHANI A., POURKHA­ local cultivars of this important nut crop. Despite some reports, there is still a LOEE A., 2020 ­ Genetic diversity, population critical need to collect comprehensive information on the genetic diversity of structure, and relationships among wild and almond germplasm in Iran. This study was conducted to evaluate the genetic domesticated almond (Prunus spp.) germplasms revealed by ISSR markers. ­ Adv. Hort. Sci., 34(3): diversity, structure, and relationships among a total of 75 individuals from 10 287­300 populations of 4 wild and cultivated almond species by using 12 inter­simple sequence repeat (ISSR) primer pairs. A total number of 353 DNA fragments were obtained of which 352 were polymorphic (99.69%).
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]
  • Self-Compatibility Sources As Sources of Variation in Advanced Almond Introgression Lines
    Self-Compatibility Sources as Sources of Variation in Advanced Almond Introgression Lines TM Gradziel Department of Plant Sciences, University of California, Davis, CA 95616 02,7159 Transfer of self-fruitfulness from related species (P. webbii, P. persica, P. mira) to almond Species Accessions Closest Prunus SFB Prunus davidiana A Prunus armeniaca B Prunus armeniaca C Prunus persica D Prunus dulcis E Prunus spinosa Prunus mira F Prunus persica F Prunus armeniaca G Prunus armeniaca E Prunus persica Prunus webbii F Prunus cerasus G Prunus avium H Prunus mume Tao et al, 2007; Hanada et al. 2014; Akagi et al. (in-press) Multiple forms of the self-compatibility gene exist but very few are utilized. 06,2-247 00,8-27 Multiple back- Nonpareil F8,7-179 crosses are needed to recover market types. Performance of different species sources differ when moved to almond New Planting Fig. 3. Seed-set following honeybee self-pollination on enclosed trees showing sizable capacity for self-compatibility for the Winters variety. Relatively high levels of self-fruitfulness are sometimes observed in self-incompatible genotypes Selection Seed ParentPollen Parent Origin Pedigree D3-15 (NP*F5,4- 43[W*W][SEL5-15SLF])) * D3-25(NP*F5,4- 2005,10-270 Winters F8,7-179 WP 11[W*W][SEL5-15SLF]) D3-11 * F7,1-1 (Sel5- 15[NP*LukensHoneyXMis]* WSB3b25)(Sel5- 2005,2-108 Nonpareil A98,2-348 P 15[NP*LukensHoneyXMis]* Self-fruitful 25-75WSB3b25) [Arb * 4-26]*[SB4, 4- 2E] * WINTERS 2005,5-17 Winters A97,1-232 M selections D3-15 (NP*F5,4- 43[W*W][SEL5-15SLF])) * D3-25(NP*F5,4- 2005,9-340
    [Show full text]
  • Host Choice in Rotylenchulus Species
    Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance.
    [Show full text]
  • Intoduction to Ethnobotany
    Intoduction to Ethnobotany The diversity of plants and plant uses Draft, version November 22, 2018 Shipunov, Alexey (compiler). Introduction to Ethnobotany. The diversity of plant uses. November 22, 2018 version (draft). 358 pp. At the moment, this is based largely on P. Zhukovskij’s “Cultivated plants and their wild relatives” (1950, 1961), and A.C.Zeven & J.M.J. de Wet “Dictionary of cultivated plants and their regions of diversity” (1982). Title page image: Mandragora officinarum (Solanaceae), “female” mandrake, from “Hortus sanitatis” (1491). This work is dedicated to public domain. Contents Cultivated plants and their wild relatives 4 Dictionary of cultivated plants and their regions of diversity 92 Cultivated plants and their wild relatives 4 5 CEREALS AND OTHER STARCH PLANTS Wheat It is pointed out that the wild species of Triticum and rela­ted genera are found in arid areas; the greatest concentration of them is in the Soviet republics of Georgia and Armenia and these are regarded as their centre of origin. A table is given show- ing the geographical distribution of 20 species of Triticum, 3 diploid, 10 tetraploid and 7 hexaploid, six of the species are endemic in Georgia and Armenia: the diploid T. urarthu, the tetraploids T. timopheevi, T. palaeo-colchicum, T. chaldicum and T. carthlicum and the hexaploid T. macha, Transcaucasia is also considered to be the place of origin of T. vulgare. The 20 species are described in turn; they comprise 4 wild species, T. aegilopoides, T. urarthu (2n = 14), T. dicoccoides and T. chaldicum (2n = 28) and 16 cultivated species. A number of synonyms are indicated for most of the species.
    [Show full text]
  • Prunus Fenzliana Fritsch) Grown on the Slopes of Mount Ararat
    Archive of SID J. Agr. Sci. Tech. (2019) Vol. 21(6): 1535-1546 Determination of Phenological and Pomological Properties and Fatty Acid Contents of Some Wild Almond Genotypes (Prunus fenzliana Fritsch) Grown on The Slopes of Mount Ararat E. Gulsoy1 ABSTRACT The species Prunus fenzliana is acknowledged to be the possible ancestor of cultivated almond (Prunus amygdalus L.) and other wild almond species. The objective of this study was to determine phenological and pomological properties and fatty acid composition of the almond species Prunus fenzliana Fritsch, which grows naturally on the slopes of Mount Ararat. The study was conducted in 2016 and 2017. The fruit weight with shell, kernel weight, fruit thickness with shell: kernel ratios of the selected almond genotypes were 0.47–0.89 g, 0.13–0.22 g, 0.87-1.31 mm, and 22.38-37.36%, respectively. Double kernelled fruits were encountered in two genotypes [(PFG-10 (6.67%) and PFG-15 (7.14%)]. In 2016, the first flowering, full flowering, and harvesting time of the genotypes ranged from 20-25 March, 24-31 March and 17-23 August, respectively. In 2017, the first flowering, full bloom, and harvest time were observed between 08-12 April, 13-17 April and 4-9 September, respectively. The oleic acid concentration was much higher than in previous studies. In this context, the oleic, linoleic, palmitic, stearic and myristic acid concentrations were 69.2-77.9, 15.2-18.5, 4.6-5.3, 1.2-1.6 and 0.7-1.7%, respectively. The results revealed that genotypes under the Prunus fenzliana species could be used as a genetic resource in rootstock breeding programs and could be utilized in chemical and pharmaceutical industry due to its rich fat content.
    [Show full text]