Histamine Modulation of the Basal Ganglia Circuitry in the Development of Pathological Grooming
Histamine modulation of the basal ganglia circuitry in the development of pathological grooming Maximiliano Rapanellia,1,2, Luciana Fricka,1,3, Haruhiko Bitob, and Christopher Pittengera,c,4 aDepartment of Psychiatry, Yale University hool of Medicine, New Haven, CT 06510; bDepartment of Neurochemistry, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan; and cDepartment of Psychology, Child Study Center, and Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06519 Edited by Solomon H. Snyder, The Johns Hopkins University School of Medicine, Baltimore, MD, and approved May 11, 2017 (received for review March 19, 2017) Aberrant histaminergic function has been proposed as a cause of Elevated grooming has garnered increasing interest in recent years tic disorders. A rare mutation in the enzyme that produces as a potential behavioral model for compulsive behavior (21). It is histamine (HA), histidine decarboxylase (HDC), has been identified seen in proposed mouse models of OCD (22–24), autism (25, 26), in patients with Tourette syndrome (TS). Hdc knockout mice ex- Rett syndrome (27), and trichotillomania (28). Repetitive stimu- hibit repetitive behavioral pathology and neurochemical charac- lation of projections from the orbitofrontal cortex to the striatum, teristics of TS, establishing them as a plausible model of tic thought to be hyperactive in OCD, can produce elevated groom- pathophysiology. Where, when, and how HA deficiency produces ing (29). these effects has remained unclear: whether the contribution of TS and OCD are associated with abnormalities in the basal HA deficiency to pathogenesis is acute or developmental, and ganglia circuitry (30–32). HA receptors are particularly dense in where in the brain the relevant consequences of HA deficiency the basal ganglia (1), and HDC protein is present at exception- occur.
[Show full text]