Manual of Flying: Volume 3 Propulsion

Total Page:16

File Type:pdf, Size:1020Kb

Manual of Flying: Volume 3 Propulsion AP3456 – 3-1 - Basic Theory and Principles of Propulsion CHAPTER 1 - BASIC THEORY AND PRINCIPLES OF PROPULSION Introduction 1. When an aircraft is travelling through air in straight and level flight and at a constant true airspeed (TAS), the engines must produce a total thrust equal to the drag on the aircraft as shown in Fig 1. If the engine thrust exceeds the drag, the aircraft will accelerate, and if the drag exceeds the thrust, the aircraft will slow down. 3-1 Fig 1 Arrangement of Thrust and Drag Forces 2. Although a variety of engine types are available for aircraft propulsion, the thrust force must always come from air or gas reaction forces normally acting on the engine or propeller surfaces. 3. The two common methods of aircraft propulsion are: a. The propeller engine powered by piston or gas turbine. b. The jet engine. Rotary wing aircraft are powered by turboshaft engines which produce shaft power to drive a gearbox and work on similar principles to gas turbine propeller engines (turboprops), except that all the available energy is absorbed by the turbine, with no residual jet thrust. Turboshaft engines are considered in Volume 3, Chapter 16. The Propeller Engine 4. With a propeller engine, the engine power produced drives a shaft which is connected to a propeller usually via a gearbox. The propeller cuts through the air accelerating it rearwards. The blade of a propeller behaves in the same way as the aerofoil of an aircraft; the air speeds up over the leading face of the propeller blade causing a reduced pressure with a corresponding increase of pressure on the rearward face (see Fig 2). This leads to a net pressure force over the propeller (where Force = Pressure × Area), thus providing thrust. For example: Net pressure of 40 kPa (Pa = N/m2); Blade area of 1 m2, Thrust = 40 kPa × 1 m2 = 40 kN With gas turbine powered propeller engines, a small amount of thrust is produced by the jet exhaust which will augment the thrust produced by the propeller. Revised May 10 Page 1 of 8 AP3456 – 3-1 - Basic Theory and Principles of Propulsion 3-1 Fig 2 Propeller Thrust Direction of Flight Slipstream Velocity Vj Relative Air Flow Va Net Force Direction (Axial Component) of Propeller 5. An alternative method of calculating the thrust produced by a propeller is provided by Newton’s laws of motion which give: Force = Mass × Acceleration ∴ Thrust = Mass flow rate of air through Propeller × Increase in velocity of the air = M × (Vj – Va) Where M = Mass flow rate of the air Vj = Velocity of slipstream Va = Velocity of the aircraft (TAS) This will give the same result as that given by the sum of pressure forces. In the case of the propeller, the air mass flow will be large, and the increase in velocity given to the air will be fairly small. The Jet Engine 6. In all cases of the jet engine, a high velocity exhaust gas is produced, the velocity of which, relative to the engine, is considerably greater than the TAS. Thrust is produced according to the equation in para 5 i.e.: Thrust = M × (Vj – Va) where Vj is now the velocity of the gas stream at the propelling nozzle (see Fig 3). This represents a simplified version of the full thrust equation as the majority of thrust produced is a result of the momentum change of the gas stream. 3-1 Fig 3 Jet Thrust - Relative Velocities a j Revised May 10 Page 2 of 8 AP3456 – 3-1 - Basic Theory and Principles of Propulsion 7. In the rocket engine (Fig 4) the gases which leave the engine are the products of the combustion of the rocket propellants carried; therefore no intake velocity term Va is required: The simplified version of the equation giving the thrust produced thus becomes: Thrust = Mass flow rate of propellant × Vj 3-1 Fig 4 Rocket Engines Solid Propellant Rocket Liquid Propulsion Rocket The Turbofan (By-pass) Engine 8. The Turbofan or by-pass engine (Fig 5) powers the vast majority of modern aircraft, and is likely to do so for the foreseeable future. It can be seen as the link between the Turbopropeller and the Turbojet engine. The thrust from a by-pass engine is derived from the mass air flow from the 'fan' plus the mass air flow from the core engine and can be exhausted separately or mixed prior to entering the jet pipe. 3-1 Fig 5 Turbofan Thrust 9. The thrust for a mixing turbofan engine can be treated in the same way as a simple turbojet, as the mass flows are mixed prior to entering a common exhaust and propelling nozzle. However, where the by-pass air flow is exhausted separately the simplified thrust calculation becomes: Thrust = Mass flow rate of air through fan duct × (Vjb – Va) + Mass flow rate of air through core engine × (Vje – Va) = Mfan × (Vjb – Va) + Mcore × (Vje – Va) The ratio Mfan/Mcore is called the by-pass ratio and is quoted for both mixing and non-mixing turbofans. Engines with by-pass ratios of less than 1.5 are termed low by-pass ratio engines, while those with ratios above 1.5 are considered high by-pass. Engine Efficiency 10. As the engine thrust propels the aircraft, propulsive power is being developed in proportion to the airspeed, i.e.:Propulsive power = Engine thrust × TAS Revised May 10 Page 3 of 8 AP3456 – 3-1 - Basic Theory and Principles of Propulsion The power developed must be sufficient to overcome aircraft drag with an adequate margin to increase aircraft velocity as required. Fuel is consumed during combustion thus releasing energy to generate power. (1 kg of kerosine produces 43 MJ of energy.) The overall efficiency (ηο) of the engine as a propulsive powerplant is defined as: Propulsive power developed ηo = Fuel power consumed Thermal and Propulsive Efficiency of Gas Turbines 11. In the conversion of fuel power into propulsive power it is convenient to consider the conversion taking place in two stages: a. The conversion of fuel power into gas power. b. The conversion of gas power into propulsive power. The airbreathing engine burns fuel to produce useful gas kinetic energy. Some of this energy is lost in the form of heat in the jet efflux, by kinetic heating, conduction to engine components, and friction. The ratio of the gas energy produced in the engine to the heat energy released by the fuel in unit time, determines the THERMAL efficiency (ηth ) of the engine, i.e.: Rate of increase in KE of gas stream ηth = Rate of energy release from fuel 12. Of the gas kinetic energy produced, some is converted into propulsive power, whilst the remainder is discharged to atmosphere in the form of wasted kinetic energy. The ratio of the propulsive power to the rate of increase in kinetic energy of the gas stream determines the PROPULSIVE efficiency (ηp ) of the engine, i.e.: Propulsive power developed ηp = Rate of increase in KE of gas stream 13. An examination of the expressions derived for the thermal, propulsive and overall efficiencies shows that the following relationship exists: ηο = ηth × ηp 14. Fig 6 shows a typical breakdown of the total fuel power produced from burning kerosine at a rate of 1.4 kg/s to produce a power potential of 60 MW. By calculating the efficiencies of the above example viz: ηth = 15/60 = 25% ηp = 12/15 = 80% ηο = 12/60 = 20% It can be seen that the biggest single loss is through waste heat, the majority of which (75%) is lost without being converted to useful kinetic energy. A further loss (5%) is experienced by failing to convert all the remaining kinetic energy to useful propulsive power. Revised May 10 Page 4 of 8 AP3456 – 3-1 - Basic Theory and Principles of Propulsion 3-1 Fig 6 Representation of Energy Efficiency 15. The generation of thrust as shown in Fig 7, M × (Vje – Va), is always accompanied by the rejection 2 of power in the form of wasted kinetic energy (kinetic energy = ½ × M × (Vje – Va) ) with a consequent effect on the propulsive efficiency (ηp). 3-1 Fig 7 Gas Turbine Thrust - Absolute Velocity For a given thrust, this wasted kinetic energy can be reduced by choosing a high value of air mass flow rate (M) and a low value of (Vje – Va), since kinetic energy is proportional to the square of the velocity. This result is shown in Fig 8. 3-1 Fig 8 Variation in KE Loss with Mass Flow Rate at Constant Thrust y g r e n E c i t e n i K d e t s a W Air Mass Flow Therefore, provided that the thermal efficiency remains constant, engines with a large mass flow and relatively low increase in gas velocity will be more efficient (see Fig 9). Revised May 10 Page 5 of 8 AP3456 – 3-1 - Basic Theory and Principles of Propulsion 3-1 Fig 9 Comparison of Propulsive Efficiencies r) le el an p pf ro ro P P d e t nc e 80 a -J v o d rb (A u T % y s c s n a e p i y s c i B s f f 60 h a p T E ig y B u n H r b o - w i n o o s - l a L P u - -F r p o n o o b a p r r -F P u T o 40 rb u T 20 0 200 400 600 800 Airspeed (kt) 16.
Recommended publications
  • CAAM 3 Report
    3rd Technical Report On Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards A joint effort of The Federal Aviation Administration and The Aerospace Industries Association March 30, 2017 Questions concerning distribution of this report should be addressed to: Federal Aviation Administration Manager, Engine and Propeller Directorate. TABLE OF CONTENTS Page Table of Contents iii List of Figures v I. Foreword 1 II. Background 1 III. Scope 2 IV. Discussion 3 V. Relationship to Previous CAAM Data 7 VI. General Notes and Comments 8 VII. Fleet Utilization 11 VIII. CAAM3 Team Members 12 IX. Appendices List of Appendices 13 Appendix 1: Standardized Aircraft Event Hazard Levels and Definitions 14 • General Notes Applicable to All Event Hazard Levels 19 • Rationale for Changes in Severity Classifications 19 • Table 1. Historical Comparison of Severity Level Descriptions and Rationale for CAAM3 Changes 21 Appendix 2: Event Definitions 39 Appendix 3: Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards (2001 through 2012) 44 • Uncontained Blade 44 • Uncontained Disk 50 • Uncontained – Other 56 iii • Uncontained – All Parts 62 • High Bypass Comparison by Generation 63 • Relationship Among High Bypass Fleet 64 • Case Rupture 66 • Case Burnthrough 69 • Under-Cowl Fire 72 • Strut/Pylon Fire 76 • Fuel Leak 78 • Engine Separation 82 • Cowl Separation 85 • Propulsion System Malfunction Recognition and Response (PSMRR) 88 • Crew Error 92 • Reverser/Beta Malfunction – In-Flight Deploy 96 • Fuel Tank Rupture/Explosion 99 • Tailpipe Fire 102 • Multiple-Engine Powerloss – Non-Fuel 107 • Multiple-Engine Powerloss – Fuel-Related 115 • Fatal Human Ingestion / Propeller Contact 120 • IFSD Snapshot by Hazard Level – 2012 Data Only 122 • RTO Snapshot by Hazard Level – 2012 Data Only 123 • APU Events 123 • Turboprop Events 124 • Matrices of Event Counts, Hazard Ratios and Rates 127 • Data Comparison to Previous CAAM Data 135 [ The following datasets which were collected in CAAM2 were not collected in CAAM3.
    [Show full text]
  • Aircraft Engine Performance Study Using Flight Data Recorder Archives
    Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3.
    [Show full text]
  • Propulsion Controls at NASA Lewis
    Aircraft Turbine Engine Control Research at NASA Glenn Research Center Dr. Sanjay Garg Chief, Intelligent Control and Autonomy Branch Ph: (216) 433-2685 FAX: (216) 433-8990 email: [email protected] http://www.grc.nasa.gov/WWW/cdtb Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Outline – The Engine Control Problem • Safety and Operational Limits • State-of-the-Art Engine Control Logic Architecture – Historical Glenn Research Center Contributions • Early Stages of Turbine Engine Control (1945-1960s) • Maturation of Turbine Engine Control (1970-1990) – Advanced Engine Control Research • Recent Significant Accomplishments (1990- 2004) • Current Research (2004 onwards) – Conclusion Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Basic Engine Control Concept • Objective: Provide smooth, stable, and stall free operation of the engine via single input (PLA) with no throttle restrictions • Reliable and predictable throttle movement to thrust response • Issues: • Thrust cannot be measured • Changes in ambient condition and aircraft maneuvers cause distortion into the fan/compressor • Harsh operating environment – high temperatures and large vibrations • Safe operation – avoid stall, combustor blow out etc. • Need to provide long operating life – 20,000 hours • Engine components degrade with usage – need to have reliable performance throughout the operating life Glenn Research Center Intelligent Control and Autonomy Branch at Lewis Field Basic Engine Control Concept • Since Thrust (T)
    [Show full text]
  • 2.0 Axial-Flow Compressors 2.0-1 Introduction the Compressors in Most Gas Turbine Applications, Especially Units Over 5MW, Use Axial fl Ow Compressors
    2.0 Axial-Flow Compressors 2.0-1 Introduction The compressors in most gas turbine applications, especially units over 5MW, use axial fl ow compressors. An axial fl ow compressor is one in which the fl ow enters the compressor in an axial direction (parallel with the axis of rotation), and exits from the gas turbine, also in an axial direction. The axial-fl ow compressor compresses its working fl uid by fi rst accelerating the fl uid and then diffusing it to obtain a pressure increase. The fl uid is accelerated by a row of rotating airfoils (blades) called the rotor, and then diffused in a row of stationary blades (the stator). The diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. A compressor consists of several stages: 1) A combination of a rotor followed by a stator make-up a stage in a compressor; 2) An additional row of stationary blades are frequently used at the compressor inlet and are known as Inlet Guide Vanes (IGV) to ensue that air enters the fi rst-stage rotors at the desired fl ow angle, these vanes are also pitch variable thus can be adjusted to the varying fl ow requirements of the engine; and 3) In addition to the stators, another diffuser at the exit of the compressor consisting of another set of vanes further diffuses the fl uid and controls its velocity entering the combustors and is often known as the Exit Guide Vanes (EGV). In an axial fl ow compressor, air passes from one stage to the next, each stage raising the pressure slightly.
    [Show full text]
  • A Design Study Me T Rop"Ol Itan Air Transit System
    NASA CR 73362 A DESIGN STUDY OF A MET R OP"OL ITAN AIR TRANSIT SYSTEM MAT ir 0 ± 0 49 PREPARED UNDER, NASA-ASEE SUMMER FACULTY FELLOWSHIP PROGRAM ,IN Cq ENGINEERING SYSTEMS DESIGN NASA CONTRACT NSR 05-020-151 p STANFORD UNIVERSITY STANFORD CALIFORNIA CL ceoroducedEAR'C-by thEGHOU AUGUST 1969 for Federal Scientific &Va Tec1nical 2 Information Springfied NASA CR 73362 A DESIGN STUDY OF A METROPOLITAN AIR TRANSIT SYSTEM MAT Prepared under NASA Contract NSR 05-020-151 under the NASA-ASEE Summer Faculty Fellowship Program in Engineering Systems Design, 16 June­ 29 August, 1969. Faculty Fellows Richard X. Andres ........... ......... ..Parks College Roger R. Bate ....... ...... .."... Air Force Academy Clarence A. Bell ....... ......"Kansas State University Paul D. Cribbins .. .... "North Carolina State University William J. Crochetiere .... .. ........ .Tufts University Charles P. Davis . ... California State Polytechnic College J. Gordon Davis . .... Georgia Institute of Technology Curtis W. Dodd ..... ....... .Southern Illinois University Floyd W. Harris .... ....... .... Kansas State University George G. Hespelt ........ ......... .University of Idaho Ronald P. Jetton ...... ............ .Bradley University Kenneth L. Johnson... .. Milwaukee School of Engineering Marshall H. Kaplan ..... .... Pennsylvania State University Roger A. Keech . .... California State Polytechnic College Richard D. Klafter... .. .. Drexel Institute of Technology Richard S. Marleau ....... ..... .University of Wisconsin Robert W. McLaren ..... ....... University'of Missouri James C. Wambold..... .. Pefinsylvania State University Robert E. Wilson..... ..... Oregon State University •Co-Directors Willi'am Bollay ...... .......... Stanford University John V. Foster ...... ........... .Ames Research Center Program Advisors Alfred E. Andreoli . California State Polytechnic College Dean F. Babcock .... ........ Stanford Research Institute SUDAAR NO. 387 September, 1969 i NOT FILMED. ppECEDING PAGE BLANK CONTENTS Page CHAPTER 1--INTRODUCTION ...
    [Show full text]
  • Thrust Reversal for Turbofan Gas Turbine Engine
    (19) TZZ¥Z___T (11) EP 3 091 198 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 09.11.2016 Bulletin 2016/45 F01D 21/14 (2006.01) F02K 1/76 (2006.01) F02K 1/72 (2006.01) F02C 9/26 (2006.01) (21) Application number: 16168699.3 (22) Date of filing: 09.05.2016 (84) Designated Contracting States: (71) Applicant: United Technologies Corporation AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Farmington, CT 06032 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (72) Inventor: MARCOS, Juan A. Designated Extension States: Middletown, CT Connecticut 06457 (US) BA ME Designated Validation States: (74) Representative: Hull, James Edward MA MD Dehns St. Bride’s House (30) Priority: 08.05.2015 US 201514707500 10 Salisbury Square London EC4Y 8JD (GB) (54) THRUST REVERSAL FOR TURBOFAN GAS TURBINE ENGINE (57) A method of thrust reversal operation according is deployed, and denying the increase in engine power to an example of the present disclosure includes, among when the at least one criterion is met. A system for thrust other things, permitting an increase in engine power reversal is also disclosed. when at least one criterion is not met and a thrust reverser EP 3 091 198 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 3 091 198 A1 2 Description of a predefined limit when the at least one predetermined criterion is met. BACKGROUND [0010] A gas turbine engine according to an example of the present disclosure includes a fan section including [0001] The present disclosure relates to a thrust re- 5 a fan nacelle arranged at least partially about a fan, an verser, and more particular to thrust reversal operation.
    [Show full text]
  • Propulsion Systems for Aircraft. Aerospace Education II
    . DOCUMENT RESUME ED 111 621 SE 017 458 AUTHOR Mackin, T. E. TITLE Propulsion Systems for Aircraft. Aerospace Education II. INSTITUTION 'Air Univ., Maxwell AFB, Ala. Junior Reserve Office Training Corps.- PUB.DATE 73 NOTE 136p.; Colored drawings may not reproduce clearly. For the accompanying Instructor Handbook, see SE 017 459. This is a revised text for ED 068 292 EDRS PRICE, -MF-$0.76 HC.I$6.97 Plus' Postage DESCRIPTORS *Aerospace 'Education; *Aerospace Technology;'Aviation technology; Energy; *Engines; *Instructional-. Materials; *Physical. Sciences; Science Education: Secondary Education; Textbooks IDENTIFIERS *Air Force Junior ROTC ABSTRACT This is a revised text used for the Air Force ROTC _:_progralit._The main part of the book centers on the discussion -of the . engines in an airplane. After describing the terms and concepts of power, jets, and4rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why theseare not used in airplanes. The discussion of the carburetor is followed byan explanation of the lubrication system. The chapter on reaction engines describes the operation of,jets, with examples of different types of jet engines.(PS) . 4,,!It********************************************************************* * Documents acquired by, ERIC include many informal unpublished * materials not available from other souxces. ERIC makes every effort * * to obtain the best copravailable. nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document" Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original.
    [Show full text]
  • Tethered Fixed-Wing Aircraft to Lift Payloads…
    Tethered Fixed-Wing Aircraft to Lift Payloads: A Concept Enabled by Electric Propulsion David Rancourt Etienne Demers Bouchard Université de Sherbrooke Georgia Institute of Technology 3000 boul. Université – Pavillon P2 275 Ferst Drive NW Sherbrooke, QC Atlanta, GA CANADA USA [email protected] [email protected] Keywords: Electric propulsion, novel aircraft concept, VTOL, hybrid-electric powertrain ABSTRACT Helicopters have been essential to the military as they have been one of the only solutions for air-transporting substantial payloads with no need for complex mile-long runway infrastructures. However, they are fundamentally limited with high fuel consumption and reduced range. A disruptive concept to vertical lift uses tethered fixed-wing aircraft to lift a payload, where multiple aircraft collaborate and fly along a near circular flight path in hover. The Electric-Powered Reconfigurable Rotor concept (EPR2) leverages the recent progress in electric propulsion and modern controls to enable efficient load lifting using fixed-wing aircraft. The novel idea is to replace tethered manned aircraft (with onboard energy, fuel) with electric-powered fixed-wing aircraft with remote energy source to enable efficient collaborative load lifting. This paper presents the conceptual design of a heavy-lifting aircraft concept using electric-powered tethered fixed-wing aircraft for a ~30 metric ton lifting capability. A physics-based multidisciplinary design and simulation environment is used to predict the performance and optimize the aircraft flight path. It is demonstrated that this concept could hover with only 3.01 MW of power yet be able to translate to over 80 kts with minimal power increase by leveraging the benefits of complex non-circular flight paths.
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • The Potential of Turboprops to Reduce Fuel Consumption in the Chinese Aviation System
    THE POTENTIAL OF TURBOPROPS TO REDUCE FUEL CONSUMPTION IN THE CHINESE AVIATION SYSTEM Megan S. Ryerson, Xin Ge Department of City and Regional Planning Department of Electrical and Systems Engineering University of Pennsylvania [email protected] ICRAT 2014 Agenda • Introduction • Data collection • Turboprops in the current CAS network • Spatial trends for short-haul aviation • Regional jet and turboprop trade space • Turboprops in the future CAS network 2 1. Introduction – Growth of the Chinese Aviation System Number of Airports • The Chinese aviation system is in a period 300 of rapid growth • China’s civil aviation system grew at a rate 250 244 of 17.6%/year, 1980 - 2009 • Number of airports grew from 77 to 166 and annual traffic volume increasing from 3.43 million to 230 million 200 • The Civil Aviation Administration of China 166 (CAAC) maintains a target of 244 airports 150 across the country by 2020 • The CAAC plans for 80% of urban and suburban areas to be within a 100km (62 100 77 miles) of aviation service by 2020 • Plans also include strengthening hub-and- 50 spoke networks across the country to meet the dual goals of improving the competitiveness and efficiency of domestic 0 and international aviation. 1980 2009 2020 (Planned) 3 1. Introduction – Reform of the Chinese Aviation System • Consolidation Strong national hubs + insufficient regional coverage • Regional commuter airlines could fill this gap by partnering with China’s major carriers and serving the second-tier and emerging hubs (Shaw, 2009) 4 1. Introduction – Aircraft of the Short Haul Chinese Aviation System Narrow Body Jet Fuel per seat: 7.9 gal Regional Jet Fuel per seat: 19.0 gal Turboprop Fuel per seat: 4.35 gal 5 1.
    [Show full text]
  • The Historical Fuel Efficiency Characteristics of Regional Aircraft from Technological, Operational, and Cost Perspectives
    The Historical Fuel Efficiency Characteristics of Regional Aircraft from Technological, Operational, and Cost Perspectives Raffi Babikian, Stephen P. Lukachko and Ian A. Waitz* Department of Aeronautics and Astronautics Massachusetts Institute of Technology 77 Massachusetts Ave., Cambridge, MA 02139 ABSTRACT To develop approaches that effectively reduce aircraft emissions, it is necessary to understand the mechanisms that have enabled historical improvements in aircraft efficiency. This paper focuses on the impact of regional aircraft on the U.S. aviation system and examines the technological, operational and cost characteristics of turboprop and regional jet aircraft. Regional aircraft are 40% to 60% less fuel efficient than their larger narrow- and wide-body counterparts, while regional jets are 10% to 60% less fuel efficient than turboprops. Fuel efficiency differences can be explained largely by differences in aircraft operations, not technology. Direct operating costs per revenue passenger kilometer are 2.5 to 6 times higher for regional aircraft because they operate at lower load factors and perform fewer miles over which to spread fixed costs. Further, despite incurring higher fuel costs, regional jets are shown to have operating costs similar to turboprops when flown over comparable stage lengths. Keywords: Regional aircraft, environment, regional jet, turboprop 1. INTRODUCTION The rapid growth of worldwide air travel has prompted concern about the influence of aviation activities on the environment. Demand for air travel has grown at an average rate of 9.0% per year since 1960 and at approximately 4.5% per year over the last decade (IPCC, 1999; FAA, 2000a). Barring any serious economic downturn or significant policy changes, various * Contact author: 617-253-0218 (phone), 617-258-6093 (fax), [email protected] (email) 1 organizations have estimated future worldwide growth will average 5% annually through at least 2015 (IPCC, 1999; Boeing, 2000; Airbus, 2000).
    [Show full text]
  • 2. Afterburners
    2. AFTERBURNERS 2.1 Introduction The simple gas turbine cycle can be designed to have good performance characteristics at a particular operating or design point. However, a particu­ lar engine does not have the capability of producing a good performance for large ranges of thrust, an inflexibility that can lead to problems when the flight program for a particular vehicle is considered. For example, many airplanes require a larger thrust during takeoff and acceleration than they do at a cruise condition. Thus, if the engine is sized for takeoff and has its design point at this condition, the engine will be too large at cruise. The vehicle performance will be penalized at cruise for the poor off-design point operation of the engine components and for the larger weight of the engine. Similar problems arise when supersonic cruise vehicles are considered. The afterburning gas turbine cycle was an early attempt to avoid some of these problems. Afterburners or augmentation devices were first added to aircraft gas turbine engines to increase their thrust during takeoff or brief periods of acceleration and supersonic flight. The devices make use of the fact that, in a gas turbine engine, the maximum gas temperature at the turbine inlet is limited by structural considerations to values less than half the adiabatic flame temperature at the stoichiometric fuel-air ratio. As a result, the gas leaving the turbine contains most of its original concentration of oxygen. This oxygen can be burned with additional fuel in a secondary combustion chamber located downstream of the turbine where temperature constraints are relaxed.
    [Show full text]