Appendix A: Crystal Symmetries and Elastic Constants

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Crystal Symmetries and Elastic Constants Appendix A: Crystal Symmetries and Elastic Constants In anisotropic materials, constitutive relations and corresponding material coefficients depend on the orientation of the body with respect to the refer- ence coordinate system. This Appendix discusses symmetry operations for point groups and Laue groups comprising the seven crystal systems first introduced in Chapter 3. Requisite terminology and definitions are given in Section A.1. Listed in Section A.2 are matrix forms of generic polar tensors (i.e., material coefficients) of orders one, two, three, and four for each Laue group, and forms for individual crystal classes comprising each Laue group for polar tensors of odd rank. Second- and third-order elastic constants are given particular attention in Section A.3. The content gener- ally applies to materials whose elastic behavior is independent of deforma- tion gradients of orders higher than one, more specifically hyperelastic ma- terials of grade one. The discussion and tabular results of Appendix A summarize a number of previous descriptions (Hearmon 1946, 1956; Bond et al. 1949; Schmid and Boas 1950; Landau and Lifshitz 1959; Brugger 1964, 1965; Truesdell and Noll 1965; Thurston 1974; Teodosiu 1982). A.1 Crystal Classes, Point Groups, and Laue Groups Under an orthogonal transformation of Cartesian reference coordinates XQX→ , deformation gradient FxX= ∂∂/ and right Cauchy-Green strain EFF1=−()/2T transform as FFQ→ and EQEQ→ T , respec- tively. Consider the free energy density in the first of (5.6) for an elastic crystal at fixed temperature, i.e., the strain energy density. The specific form of the elastic mechanical response function, in this case the strain en- ergy density, respects the symmetry, or lack thereof, of the material: ψψ(QEQT ) = () E. (A.1) The set _ of all orthogonal tensors Q that leave the mechanical response function unaffected, i.e., those operations for which (A.1) is satisfied, is J.D. Clayton, Nonlinear Mechanics of Crystals, Solid Mechanics and Its Applications 177, 543 DOI 10.1007/978-94-007-0350-6, © Springer Science+Business Media B.V. 2011 544 Appendix A: Crystal Symmetries and Elastic Constants called the symmetry group or isotropy group for the material. For two transformations QQ, ∈_ , their product QQ ∈_ . Furthermore, 12 12 Q∈_ implies QQT =∈−1 _ . Every isotropy group contains the identity map Q1= and the inversion Q1= − . Subgroups consisting of all proper orthogonal tensors ( detQ = + 1) of the isotropy groups comprise the rota- tion groups _+ . Any member of particular group _+ can be created by a n product of rotation matrices called generators of that group, labeled R N . Any entry of _ for that group can then be obtained from entries of _+ via use of the inversion. The group of all rotations, reflections, and transla- tions that leave a structure invariant is called the space group. A space group can include combinations of translations, rotations, and reflections (i.e., screw and glide operations) individually not contained in that space group (Chaikin and Lubensky 1995). The set of all rotations and reflec- tions that preserve a structure at a point is called the point group. Crystals sharing the same point group are said to belong to the same crystal class. In three dimensions, the number of distinct space groups is 230, and the number of distinct point groups or crystal classes is thirty-two. Every crystal class falls into one of eleven Laue groups. Each Laue group corresponds to a different set of rotations _+ to which elastic me- chanical response functions in the context of (A.1) are invariant. Table A.1 lists Laue groups, point groups, and generators for all crystal classes, n following Thurston (1974). The notation RN denotes a right-handed rota- tion by angle 2/π n about an axis in the direction of unit vector N. Bold- face indices i, j, and k denote unit vectors of a right-handed orthonormal basis for X, and mi=++3(−1/2 j k ). Also denoted by asterisk in Table A.1 are the eleven crystal point groups—one per Laue group—with an in- version center or center of symmetry (i.e., those that are centrosymmetric). The seven crystal systems of Fig. 3.1 whose symmetry elements are listed in Table A.2 are recovered from the eleven Laue groups, since two Laue groups comprise each of the cubic, tetragonal, rhombohedral, and hexago- nal crystal systems. The alpha-numeric notation used to label each point group gives details about symmetries of crystals in that group, and a num- ber of different notational schemes exist in crystallography for labeling point (and space) groups. The reader is referred to Thurston (1974), Rohrer (2001), and references therein for a more detailed explanation. Modern Hermann-Mauguin international symbols are used in column five of Table A.1, following Rohrer (2001). Columns six and seven of Table A.1 follow the scheme of Thurston (1974), who in turn cites Groth (1905). A.1 Crystal Classes, Point Groups, and Laue Groups 545 Table A.1 Laue groups, generators, point groups, and crystal classes Crystal Laue # Generators Point Crystal class # system group group Triclinic N 1 1 1 triclinic asymmetric 1 1 triclinic pinacoidal* 2 Mono- M 2 2 2 monoclinic sphenoidal 3 Rk clinic m monoclinic domatic 4 2/m monoclinic prismatic* 5 Ortho- O 3 2 2 222 orthorhombic disphenoidal 6 Ri , R j rhombic mm2 orthorhombic pyramidal 7 mmm orthorhombic dipyramidal* 8 Tetrago- TII 4 4 4 tetragonal pyramidal 10 Rk nal 4 tetragonal disphenoidal 9 4/m tetragonal dipyramidal* 13 Tetrago- TI 5 4 2 422 tetragonal trapezohedral 12 Rk , Ri nal 4mm ditetragonal pyramidal 14 42m tetragonal scalenohedral 11 4/mmm ditetragonal dipyramidal* 15 Rhom- RII 6 3 3 trigonal pyramidal 16 Rk bohedral 3 trigonal rhombohedral* 17 Rhom- RI 7 3 2 32 trigonal trapezohedral 18 Rk , Ri bohedral 3m ditrigonal pyramidal 20 3m ditrigonal scalenohedral* 21 Hexago- HII 8 6 6 hexagonal pyramidal 23 Rk nal 6 trigonal dipyramidal 19 6/m hexagonal dipyramidal* 25 Hexago- HI 9 6 2 622 hexagonal trapezohedral 24 Rk , Ri nal 6mm dihexagonal pyramidal 26 62m ditrigonal dipyramidal 22 6/mmm dihexagonal dipyramidal* 27 Cubic CII 10 2 2 3 23 cubic tetartoidal 28 Ri , R j , Rm m3 cubic diploidal* 30 Cubic CI 11 4 4 4 432 cubic gyroidal 29 Ri , R j , Rk 43m cubic hextetrahedral 31 mm3 cubic hexoctahedral* 32 Transversely iso- 12 ϕ Rk , 02<<ϕ π tropic** Isotropic** 13 all proper rotations *Denotes a point group with an inversion center **Not a natural crystal system 546 Appendix A: Crystal Symmetries and Elastic Constants Particular aspects of each Laue group are discussed next. The reader is referred to Bond et al. (1949), Landau and Lifshitz (1959), and Teodosiu (1982) for additional details. Formal standards on terminology and as- signment of coordinate systems for crystalline solids are given by Bond et al. (1949). The triclinic crystal system contains Laue group N or 1. This system has the lowest material symmetry; a triclinic crystal has no symmetry axes n or planes. Though the coordinate system corresponding to RN in Table A.1 may be chosen arbitrarily (Landau and Lifshitz 1959), standard con- ventions do exist for selecting i, j, and k for a given specimen (Bond et al. 1949). Monoclinic crystals belong to Laue group M or 2 in the numbering scheme of Table A.1. Crystals of this system possess at any point, an axis of symmetry of second order, a single plane of reflection symmetry, or n both. The coordinate system corresponding to RN is chosen such that k is aligned along the axis of symmetry or is perpendicular to the plane of symmetry. The orthorhombic system includes Laue group O or 3. It describes crys- tals with three mutually perpendicular twofold axes, two mutually perpen- dicular planes of reflection symmetry, or both. The coordinate system cor- n responding to RN is chosen such that i and j are aligned along the twofold axes or perpendicular to the planes of symmetry. If in this case k is also a plane of symmetry, then the orthorhombic crystal is also orthotropic. The tetragonal system includes Laue groups TII (4) and TI (5). Crystals of group TII have a single axis of fourfold symmetry. The k axis is chosen parallel to this axis. Crystals of the tetragonal subsystem TI possess, in addition to this fourfold axis, an axis of twofold symmetry along vector i. The rhombohedral system includes Laue groups RII (6) and RI (7). Crystals of these groups have an axis of threefold symmetry, convention- ally called the c-axis when the Bravais-Miller system is used. For this rea- son, sometimes the rhombohedral system is referred to as the trigonal sys- tem. Furthermore, sometimes groups 6 and 7 are labeled as belonging to the hexagonal system, even though crystals of these groups do not possess an axis of sixfold symmetry. The unit vector k is taken parallel to the axis of symmetry, that is, parallel to the c-axis. Crystals of group RI also pos- sess an axis of twofold symmetry parallel to unit vector i. The hexagonal system contains Laue groups HII (8) and HI (9). These crystals have an axis of sixfold symmetry, conventionally labeled the c- axis. According to the notation in Table A.1, unit vector k is aligned par- allel to the axis of sixfold symmetry. Crystals of group HI also possess an axis of twofold symmetry parallel to unit vector i. A.2 Generic Material Coefficients 547 The cubic crystal system includes Laue groups CII (10) and CI (11). Cubic crystals have three twofold axes of symmetry.
Recommended publications
  • 361: Crystallography and Diffraction
    361: Crystallography and Diffraction Michael Bedzyk Department of Materials Science and Engineering Northwestern University February 2, 2021 Contents 1 Catalog Description3 2 Course Outcomes3 3 361: Crystallography and Diffraction3 4 Symmetry of Crystals4 4.1 Types of Symmetry.......................... 4 4.2 Projections of Symmetry Elements and Point Groups...... 9 4.3 Translational Symmetry ....................... 17 5 Crystal Lattices 18 5.1 Indexing within a crystal lattice................... 18 5.2 Lattices................................. 22 6 Stereographic Projections 31 6.1 Projection plane............................ 33 6.2 Point of projection........................... 33 6.3 Representing Atomic Planes with Vectors............. 36 6.4 Concept of Reciprocal Lattice .................... 38 6.5 Reciprocal Lattice Vector....................... 41 7 Representative Crystal Structures 48 7.1 Crystal Structure Examples ..................... 48 7.2 The hexagonal close packed structure, unlike the examples in Figures 7.1 and 7.2, has two atoms per lattice point. These two atoms are considered to be the motif, or repeating object within the HCP lattice. ............................ 49 1 7.3 Voids in FCC.............................. 54 7.4 Atom Sizes and Coordination.................... 54 8 Introduction to Diffraction 57 8.1 X-ray .................................. 57 8.2 Interference .............................. 57 8.3 X-ray Diffraction History ...................... 59 8.4 How does X-ray diffraction work? ................. 59 8.5 Absent
    [Show full text]
  • An Approximate Nodal Is Developed to Calculate the Change of •Laatio Constants Induced by Point Defect* in Hep Metals
    1 - INTBOPUCTIOB the elastic conatants.aa well aa othernmechanieal pro partita of* IC/79/lW irradiated materiale (are vary sensitive to tne oonoantration of i- INTERNAL REPORT (Limited distribution) rradiation produced point defeota.One of the firat eatimatee of thla effect waa done by Dienea [l"J who aiaply averaged over the whole la- International Atomic Energy Agency ttice the locally changed interatoalo bonds due to the pxesense of" and the defect.With tola nodal ha predioted an inoreaee of the alaatle United Nations Educational Scientific and Cultural Organization constant* of about 10* par atonic f of interatitlala in Ou and a da. oreaee of l]t par at. % of vacanolea. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Later on,experlaental etudiea by Konlg at al.[2]and wanal lilgar* very large decrease a of about 5O}( per at.)t of Vrenlcal dafaota.fha theory waa than iaproved in order to relate the change of a la* tic con a tan t a to the defect lnduoed change of force oonatanta and tno equivalent aethoda were devalopedi the energy-»athod of ludwig [4] CHANGE OF ELASTIC CONSTANTS and the t-aatrix method of Slllot et al.C ?]. INDUCED BY FOIMT DEFECTS IN hep CRYSTALS * Iheoretioal eetlnates for oublo oryetala have been oarrie* out by Ludwig[4] for the caae of vacancleafby Piatorlueld for intarati- Carlos Tome •• tiala and by Sederloaa et al.t?] for duabell interotitiala. International Centre for Theoretical Physics, Trieste, Italy. Re thaoretloal work baa been done ao far for hexagonal cryatmlaj and the experimental neaeurentanta (available only for Kg) ax* eona- ABSTRACT what crude t8,9i,ayan though in the last few.
    [Show full text]
  • Gravitation in the Surface Tension Model of Spacetime
    IARD 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012010 doi:10.1088/1742-6596/1239/1/012010 Gravitation in the surface tension model of spacetime H A Perko1 1Office 14, 140 E. 4th Street, Loveland, CO, USA 80537 E-mail: [email protected] Abstract. A mechanical model of spacetime was introduced at a prior conference for describing perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension. In the prior work, equations governing spacetime dynamics described by the model show some similarities to fundamental equations of quantum mechanics. Similarities were identified between the model and equations of Klein-Gordon, Schrödinger, Heisenberg, and Weyl. The introduction did not explain how gravitation arises within the model. In this talk, the model will be summarized, corrected, and extended for comparison with general relativity. An anisotropic elastic tensor is proposed as a constitutive relation between stress energy and curvature instead of the traditional Einstein constant. Such a relation permits spatial geometric terms in the mechanical model to resemble quantum mechanics while temporal terms and the overall structure of tensor equations remain consistent with general relativity. This work is in its infancy; next steps are to show how the anisotropic tensor affects cosmological predictions and to further explore if geometry and quantum mechanics can be related in more than just appearance. 1. Introduction The focus of this research is to find a mechanism by which spacetime might curl, warp, or re-configure at small scales to provide a geometrical explanation for quantum mechanics while remaining consistent with gravity and general relativity.
    [Show full text]
  • Arxiv:1704.01012V1 [Cond-Mat.Mtrl-Sci] 1 Apr 2017 Is the Second Most Important Material After Silicon
    Symmetry and Piezoelectricity: Evaluation of α-Quartz coefficients C. Tannous Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, UMR-6285 CNRS, Brest Cedex3, FRANCE Piezoelectric coefficients of α-Quartz are derived from symmetry arguments based on Neumann's Principle with three different methods: Fumi, Landau-Lifshitz and Royer-Dieulesaint. While Fumi method is tedious and Landau-Lifshitz requires additional physical principles to evaluate the piezo- electric coefficients, Royer-Dieulesaint is the most elegant and most efficient of the three techniques. PACS numbers: 77.65.-j, 77.65.Bn, 77.84.-s Keywords: Piezoelectricity, piezoelectric constants, piezoelectric materials I. INTRODUCTION AND MOTIVATION Physics students are exposed to various types of symmetry [1] and conservation laws in Graduate/Undergraduate Mechanics and Electromagnetism with Lorentz transformation and Gauge symmetries, in Graduate/Undergraduate Quantum Mechanics during the study of Atoms and Molecules. In undergraduate courses such as Special Relativity, Lorentz Transformation is used to unify symmetries between Mechanics and Electromagnetism. In Graduate High Energy Physics, the CPT theorem where C denotes charge conjugation (Q ! −Q), P is parity (r ! −r) and T is time reversal (t ! −t) as well as Gauge symmetry (Ai ! Ai + @iχ) provide an important insight into the role of symmetry in the building blocks of matter and unification of fundamental forces and interaction between particles. Graduate/undergraduate Solid State Physics provide a direct illustration of how Crystal Symmetry plays a fun- damental role in the determination of physical constants and transport coefficients as well as conservation and sim- plification of physical laws. The relation between symmetry and dispersion relations through Kramers theorem (T symmetry) is another example of the power of symmetry in Solid State physics.
    [Show full text]
  • A Manifold Learning Approach to Data-Driven Computational Mechanics
    A Manifold Learning Approach to Data-Driven Computational Mechanics Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, Francisco Chinesta To cite this version: Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, et al.. A Manifold Learning Approach to Data-Driven Computational Mechanics. 13e colloque national en calcul des structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01926477 HAL Id: hal-01926477 https://hal.archives-ouvertes.fr/hal-01926477 Submitted on 19 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSMA 2017 13ème Colloque National en Calcul des Structures 15-19 Mai 2017, Presqu’île de Giens (Var) A Manifold Learning Approach to Data-Driven Computational Me- chanics R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1 1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr 2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es Résumé — Standard simulation in classical mechanics is based on the use of two very different types of equations.
    [Show full text]
  • Additive Effects of Alkali Metals on Cu-Modified Ch3nh3pbi3−Δclδ
    RSC Advances PAPER View Article Online View Journal | View Issue Additive effects of alkali metals on Cu-modified CH3NH3PbI3ÀdCld photovoltaic devices† Cite this: RSC Adv.,2019,9,24231 Naoki Ueoka, Takeo Oku * and Atsushi Suzuki We investigated the addition of alkali metal elements (namely Na+,K+,Rb+, and Cs+) to Cu-modified CH3NH3PbI3ÀdCld photovoltaic devices and their effects on the photovoltaic properties and electronic structure. The open-circuit voltage was increased by CuBr2 addition to the CH3NH3PbI3ÀdCld precursor solution. The series resistance was decreased by simultaneous addition of CuBr2 and RbI, which increased the external quantum efficiencies in the range of 300–500 nm, and the short-circuit current density. The energy gap of the perovskite crystal increased through CuBr2 addition, which we also confirmed by first-principles calculations. Charge carrier generation was observed in the range of 300– Received 25th April 2019 500 nm as an increase of the external quantum efficiency, owing to the partial density of states Accepted 24th July 2019 contributed by alkali metal elements. Calculations suggested that the Gibbs energies were decreased by DOI: 10.1039/c9ra03068a incorporation of alkali metal elements into the perovskite crystals. The conversion efficiency was Creative Commons Attribution 3.0 Unported Licence. rsc.li/rsc-advances maintained for 7 weeks for devices with added CuBr2 and RbI. PbI2 +CH3NH3I + 2CH3NH3Cl / CH3NH3PbI3 Introduction + 2CH3NH3Cl (g)[ (140 C)(2) Studies of methylammonium lead halide perovskite solar x y / cells started in 2009, when a conversion efficiency of 3.9% PbI2 + CH3NH3I+ CH3NH3Cl (CH3NH3)x+yPbI2+xCly 1 / [ was reported. Some devices have since yielded conversion CH3NH3PbI3 +CH3NH3Cl (g) (140 C) (3) efficiencies of more than 20% as studies have expanded This article is licensed under a 2–5 Owing to the formation of intermediates and solvent evap- globally, with expectations for these perovskite solar cells 6–9 oration, perovskite grains are gradually formed by annealing.
    [Show full text]
  • Pharmaceutico Analytical Study of Udayabhaskara Rasa
    INTERNATIONAL AYURVEDIC MEDICAL JOURNAL Research Article ISSN: 2320 5091 Impact Factor: 4.018 PHARMACEUTICO ANALYTICAL STUDY OF UDAYABHASKARA RASA Gopi Krishna Maddikera1, Ranjith. B. M2, Lavanya. S. A3, Parikshitha Navada4 1Professor & HOD, Dept of Rasashastra & Bhaishajya Kalpana, S.J.G Ayurvedic Medical College & P.G Centre, Koppal, Karnataka, India 2Ayurveda Vaidya; 3Ayurveda Vaidya; 43rd year P.G Scholar, T.G.A.M.C, Bellary, Karnataka, India Email: [email protected] Published online: January, 2019 © International Ayurvedic Medical Journal, India 2019 ABSTRACT Udayabhaskara rasa is an eccentric formulation which is favourable in the management of Amavata. Regardless of its betterment in the management of Amavata, no research work has been carried out till date. The main aim of this study was preparation of Udayabhaskara Rasa as disclosed in the classics & Physico-chemical analysis of Udayabhaskara Rasa. Udayabhaskara Rasa was processed using Kajjali, Vyosha, dwikshara, pancha lavana, jayapala and beejapoora swarasa. The above ingredients were mixed to get a homogenous mixture of Udayab- haskara Rasa which was given 1 Bhavana with beejapoora swarasa and later it is dried and stored in air-tight container. The Physico chemical analysis of Udayabhaskara Rasa before (UB-BB) and after bhavana (UB-AB) was done. Keywords: Udayabhaskara Rasa, XRD, FTIR, SEM-EDAX. INTRODUCTION Rasashastra is a branch of Ayurveda which deals with Udayabhaskara Rasa. In the present study the formu- metallo-mineral preparations aimed at achieving Lo- lation is taken from the text brihat nighantu ratna- havada & Dehavada. These preparations became ac- kara. The analytical study reveals the chemical com- ceptable due to its assimilatory property in the minute position of the formulations as well as their concentra- doses.
    [Show full text]
  • 1 Revision 1 Single-Crystal Elastic Properties of Minerals and Related
    Revision 1 Single-Crystal Elastic Properties of Minerals and Related Materials with Cubic Symmetry Thomas S. Duffy Department of Geosciences Princeton University Abstract The single-crystal elastic moduli of minerals and related materials with cubic symmetry have been collected and evaluated. The compiled dataset covers measurements made over an approximately seventy year period and consists of 206 compositions. More than 80% of the database is comprised of silicates, oxides, and halides, and approximately 90% of the entries correspond to one of six crystal structures (garnet, rocksalt, spinel, perovskite, sphalerite, and fluorite). Primary data recorded are the composition of each material, its crystal structure, density, and the three independent nonzero adiabatic elastic moduli (C11, C12, and C44). From these, a variety of additional elastic and acoustic properties are calculated and compiled, including polycrystalline aggregate elastic properties, sound velocities, and anisotropy factors. The database is used to evaluate trends in cubic mineral elasticity through consideration of normalized elastic moduli (Blackman diagrams) and the Cauchy pressure. The elastic anisotropy and auxetic behavior of these materials are also examined. Compilations of single-crystal elastic moduli provide a useful tool for investigation structure-property relationships of minerals. 1 Introduction The elastic moduli are among the most fundamental and important properties of minerals (Anderson et al. 1968). They are central to understanding mechanical behavior and have applications across many disciplines of the geosciences. They control the stress-strain relationship under elastic loading and are relevant to understanding strength, hardness, brittle/ductile behavior, damage tolerance, and mechanical stability. Elastic moduli govern the propagation of elastic waves and hence are essential to the interpretation of seismic data, including seismic anisotropy in the crust and mantle (Bass et al.
    [Show full text]
  • An Atomistic Study of Phase Transition in Cubic Diamond Si Single Crystal T Subjected to Static Compression ⁎ Dipak Prasad, Nilanjan Mitra
    Computational Materials Science 156 (2019) 232–240 Contents lists available at ScienceDirect Computational Materials Science journal homepage: www.elsevier.com/locate/commatsci An atomistic study of phase transition in cubic diamond Si single crystal T subjected to static compression ⁎ Dipak Prasad, Nilanjan Mitra Indian Institute of Technology Kharagpur, Kharagpur 721302, India ARTICLE INFO ABSTRACT Keywords: It is been widely experimentally reported that Si under static compression (typically in a Diamond Anvil Setup- Molecular dynamics DAC) undergoes different phase transitions. Even though numerous interatomic potentials are used fornu- Phase transition merical studies of Si under different loading conditions, the efficacy of different available interatomic potentials Hydrostatic and Uniaxial compressive loading in determining the phase transition behavior in a simulation environment similar to that of DAC has not been Cubic diamond single crystal Silicon probed in literature which this manuscript addresses. Hydrostatic compression of Silicon using seven different interatomic potentials demonstrates that Tersoff(T0) performed better as compared to other potentials with regards to demonstration of phase transition. Using this Tersoff(T0) interatomic potential, molecular dynamics simulation of cubic diamond single crystal silicon has been carried out along different directions under uniaxial stress condition to determine anisotropy of the samples, if any. -tin phase could be observed for the [001] direction loading whereas Imma along with -tin phase could be observed for [011] and [111] direction loading. Amorphization is also observed for [011] direction. The results obtained in the study are based on rigorous X-ray diffraction analysis. No strain rate effects could be observed for the uniaxial loading conditions. 1. Introduction potential(SW) [19,20] for their simulations.
    [Show full text]
  • Entropy Principle and Recent Results in Non-Equilibrium Theories
    Entropy 2014, 16, 1756-1807; doi:10.3390/e16031756 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Entropy Principle and Recent Results in Non-Equilibrium Theories Vito Antonio Cimmelli 1;*, David Jou 2, Tommaso Ruggeri 3 and Péter Ván 4;5;6 1 Department of Mathematics, Computer Science and Economics, University of Basilicata, Potenza 85100, Italy 2 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, and Institut d’Estudis Catalans, Barcelona, Catalonia 08193, Spain; E-Mail: [email protected] 3 Department of Mathematics and Research Center of Applied Mathematics, University of Bologna, Bologna 40123, Italy; E-Mail: [email protected] 4 Department of Theoretical Physics, Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest 1121, Hungary; E-Mail: [email protected] 5 Department of Energy Engineering, BME, Budapest 1111, Hungary 6 Montavid Thermodynamic Research Group, Budapest 1112 , Hungary * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-097-120-5885; Fax: +39-097-120-5896. Received: 30 December 2013; in revised form: 27 January 2014 / Accepted: 7 March 2014 / Published: 24 March 2014 Abstract: We present the state of the art on the modern mathematical methods of exploiting the entropy principle in thermomechanics of continuous media. A survey of recent results and conceptual discussions of this topic in some well-known non-equilibrium theories (Classical irreversible thermodynamics CIT, Rational thermodynamics RT, Thermodynamics of irreversible processes TIP, Extended irreversible thermodynamics EIT, Rational Extended thermodynamics RET) is also summarized. Keywords: continuum thermodynamics; entropy principle; rational thermodynamics; classical irreversible thermodynamics; extended irreversible thermodynamics; rational extended thermodynamics; exploitation of second law PACS Classification: 03.50.-z, 05.70.Ln, 05.70.Ce Entropy 2014, 16 1757 1.
    [Show full text]
  • Irreducible Matrix Resolution of the Elasticity Tensor for Symmetry Systems
    Irreducible matrix resolution of the elasticity tensor for symmetry systems Yakov Itin Inst. Mathematics, Hebrew Univ. of Jerusalem, Givat Ram, Jerusalem 91904, Israel, and Jerusalem College of Technology, Jerusalem 91160, Israel, email: [email protected] December 11, 2018, file ElastMatrix1.tex Abstract In linear elasticity, a fourth order elasticity (stiffness) tensor of 21 independent com- ponents completely describes deformation properties of a material. Due to Voigt, this tensor is conventionally represented by a 6 × 6 symmetric matrix. This classical matrix representation does not conform with the irreducible decomposition of the elasticity tensor. In this paper, we construct two alternative matrix representations. The 3 × 7 matrix representation is in a correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional repre- sentation of the elasticity tensor by three 3 × 3 matrices is suitable for description the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation. Key index words: anisotropic elasticity tensor, irreducible decomposition, matrix repre- sentation. Mathematics Subject Classification: 74B05, 15A69, 15A72. Contents arXiv:1812.03367v1 [physics.class-ph] 8 Dec 2018 1 Introduction2 2 Matrix representations3 2.1 Voigt’s representation . .4 2.2 An alternative representation . .4 1 Y. Itin Irreducible matrix resolution of the elasticity tensor 2 3 Irreducible decomposition5 3.1 GL(3)-decomposition . .5 3.2 SO(3; R)-decomposition . .8 3.2.1 Cauchy part . .8 3.2.2 Non-Cauchy part . 10 3.3 Irreducible decomposition .
    [Show full text]
  • Crystal Structure-Crystalline and Non-Crystalline Materials
    ASSIGNMENT PRESENTED BY :- SOLOMON JOHN TIRKEY 2020UGCS002 MOHIT RAJ 2020UGCS062 RADHA KUMARI 2020UGCS092 PALLAVI PUSHPAM 2020UGCS122 SUBMITTED TO:- DR. RANJITH PRASAD CRYSTAL STRUCTURE CRYSTALLINE AND NON-CRYSTALLINE MATERIALS . Introduction We see a lot of materials around us on the earth. If we study them , we found few of them having regularity in their structure . These types of materials are crystalline materials or solids. A crystalline material is one in which the atoms are situated in a repeating or periodic array over large atomic distances; that is, long-range order exists, such that upon solidification, the atoms will position themselves in a repetitive three-dimensional pattern, in which each atom is bonded to its nearest-neighbor atoms. X-ray diffraction photograph [or Laue photograph for a single crystal of magnesium. Crystalline solids have well-defined edges and faces, diffract x-rays, and tend to have sharp melting points. What is meant by Crystallography and why to study the structure of crystalline solids? Crystallography is the experimental science of determining the arrangement of atoms in the crystalline solids. The properties of some materials are directly related to their crystal structures. For example, pure and undeformed magnesium and beryllium, having one crystal structure, are much more brittle (i.e., fracture at lower degrees of deformation) than pure and undeformed metals such as gold and silver that have yet another crystal structure. Furthermore, significant property differences exist between crystalline and non-crystalline materials having the same composition. For example, non-crystalline ceramics and polymers normally are optically transparent; the same materials in crystalline (or semi-crystalline) forms tend to be opaque or, at best, translucent.
    [Show full text]