Upregulated Expression of BCL2, MCM7, and CCNE1 Indicate

Total Page:16

File Type:pdf, Size:1020Kb

Upregulated Expression of BCL2, MCM7, and CCNE1 Indicate Original Article - Basic and Translational Research Investig Clin Urol 2016;57:63-72. http://dx.doi.org/10.4111/icu.2016.57.1.63 pISSN 2466-0493 • eISSN 2466-054X Upregulated expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines Sung Han Kim1, Jin-Nyoung Ho2,3, Hyunjin Jin2,3, Sang Chul Lee3, Sang Eun Lee3, Sung-Kyu Hong3, Jeong Woo Lee4, Eun-Sik Lee4, Seok-Soo Byun3 1Department of Urology, National Cancer Center, Goyang, 2Biomedical Research Institute and 3Department of Urology, Seoul National University Bundang Hospital, Seongnam, 4Department of Urology, Seoul National University Hospital, Seoul, Korea Purpose: The mechanism of resistance to cisplatin during treatment of bladder cancer (BC) has been a subject of intense investiga- tion in clinical research. This study aims to identify candidate genes associated with resistance to cisplatin, in order to understand the resistance mechanism of BC cells to the drug, by combining the use of microarray profiling, quantitative reverse transcription- polymerase chain reaction (RT-PCR), and Western blot analyses. Materials and Methods: The cisplatin sensitive human BC cell line (T24) and the cisplatin resistant BC cell line, T24R2, were used for microarray analysis to determine the differential expression of genes that are significant in cisplatin resistance. Candidate upregulated genes belonging to three well-known cancer-related KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways (p53 tumor suppressor, apoptosis, and cell cycle) were selected from the microarray data. These candidate genes, differentially expressed in T24 and T24R2, were then confirmed by quantitative RT-PCR and western blot. A fold change ≥2 with a p-value <0.05 was considered significant. Results: A total of 18 significantly upregulated genes were detected in the three selected cancer-related pathways in both micro- array and RT-PCR analyses. These genes were PRKAR2A, PRKAR2B, CYCS, BCL2, BIRC3, DFFB, CASP6, CDK6, CCNE1, STEAP3, MCM7, ORC2, ORC5, ANAPC1, and ANAPC7, CDC7, CDC27, and SKP1. Western blot analyses also confirmed the upregulation of BCL2, MCM7, and CCNE1 at the protein level, indicating their crucial association with cisplatin resistance. Conclusions: The BCL2, MCM7, and CCNE1 genes might play distinctive roles in cisplatin resistance in BC. Keywords: Cell line; Cisplatin; Drug resistance; Microarray analysis; Urinary bladder neoplasms This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received: 15 October, 2015 • Accepted: 16 November, 2015 Corresponding Author: Seok-Soo Byun Department of Urology, Seoul National University Bundang Hospital, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea TEL: +82-31-787-7349, FAX: +82-31-787-4057, E-mail: [email protected] ⓒ The Korean Urological Association, 2016 www.icurology.org 63 Kim et al INTRODUCTION cisplatin f rom 0.039 to 40.0 µg/mL [6,10]. T24R2 cells were resistant to treatment with cisplatin (Pfizer, Seoul, Korea) Cisplatin-based combination chemotherapy protocols at concentration up to 2 µg/mL [11] and proven significantly such as methotrexate, vinblastine, doxorubicin and cisplatin, more resistant to cisplatin treatment than other cell or gemcitabine and cisplatin have been a mainstay for lines in our previous studies [6,9-12]. To measure cell advanced (or metastatic) bladder cancer (BC) treatment for chemosensitivity, exponentially growing cells were incubated a number of years and have prolonged the survival of these with different concentrations of cisplatin (0.1–100 µg/mL) patients by up to 19 months [1-4]. However, about 30% of for four days, as previously described [6,9-11]. All assays were patients fail to respond to the initial chemotherapy and in performed in triplicate. Preliminary experiments confirmed most cases, the cancer recurs within one year, and patients that cisplatin at these concentrations had no direct cytotoxic usually die after 2–3 years of chemotherapy due to the effect during first 24 hours of treatment. The half maximal emergence of cisplatin resistant (CR) cancer [1,2]. This wide- inhibitory concentrations (IC50) f or T24R2 and T24 cell lines spread occurrence of CR has resulted in many studies that were determined treated with 20 µg /mL and 1.25 µg/mL of have investigated the molecular mechanisms underlying cisplatin, respectively (not shown in data) [6,10]. cisplatin resistance in BC with the aim of developing an effective therapeutic regimen for BC patients with CR. 2. Microarray sample preparation and analysis of In the last few decades, an increased understanding gene expression of genetic and molecular biological properties of both Total RNA was extracted from T24 and T24R2 cell lines anticancer agents and anticancer resistance has led to the using the mirVanaTM isolation kit (mirVana microRNA clinical development of mechanism-based therapeutics and Isolation Kit, Ambion [Life Technologies], Austin, TX, USA) targeted strategies for the clinical treatment of advanced BC in accordance with the manufacturer’s instructions. RNA [3,4]. Numerous experiments have also tried to understand samples that had high RNA integrity numbers (RIN>9.0; and overcome CR in BC cells in the laboratory [5,6]. Recently, RIN, developed by Agilent Technologies, Santa Clara, CA, there has been a rapid progress in the understanding of USA) and had A260/A280 absorbance ratios ranging from 1.8 CR using microarray analysis that permits a simultaneous to 2.1 were used for cDNA synthesis. The amplification cycles and quick expression profiling of tens of thousands of of RNA to cDNA and cDNA to biotin-labeled aRNA were genes, leading to the identification of genes that might performed using the GeneChip IVT Express kit (Affymetrix, be significant in CR [7,8]. Several previously published Santa Clara, CA, USA). The generation of biotin-labeled experiments from our laboratory have been performed to aRNA by in vitro transcription, hybridization to the array try to define the CR mechanism and CR-related genes and and washing and scanning were performed according to the molecular pathways using microarray methods with BC cell manufacturer’s instructions. lines including CR and reported multiple important findings o f CR [5-11]. 3. Microarray data normalization and analysis In this study, we performed microarray profiling, GenPlex software ver. 3.0 (ISTECH Inc., Goyang, Korea) quantitative real time polymerase chain reaction (qRT- was used for analyzing the CEL file data. The MAS5 PCR), and western blot analyses on a CR and a cisplatin algorithm was used for obtaining the gene expression sensitive BC cell line, to investigate potential candidate summary. GeneChip Human Genome HG-U133 Plus 2.0 genes that might be significant in CR. Knowing which genes array data was analyzed using the Microarray Suite, are differentially expressed between the CR and sensitive MicroDB, and the Data Mining Tool software (Affymetrix) cell lines will help us gain a better understanding of the containing 54,120 probe sets of 38,573 gene clusters in the resistance mechanism of cisplatin. UniGene database. After Global scaling normalization, the normalized data was then log transformed to base MATERIALS AND METHODS 2. The gene expression levels in T24R and T24R2 were normalized and analyzed by (Affymetrix). Gene clusters 1. Cell lines and culture conditions were analyzed using GeneCluster 1.0 (MIT, Cambridge, MA, Three experimental paired sets of two BC cell lines USA). Patterns of altered gene expression between the cell used: a cisplatin-sensitive control cell line T24 (ATCC, lines were explored using the self-organizing map cluster Manassas, VA, USA) and a CR cell line T24R2 generated analysis tool [13]. The genes showing altered expression were by the treatment of T24 cells with serial dilutions of then categorized based on their biological function using 64 www.icurology.org http://dx.doi.org/10.4111/icu.2016.57.1.63 Cisplatin-resistance in human bladder cancer Species Direction Gene Sequence Product (bp) Human hGAPDH 5'-forward-3' TGC ACC ACC AAC TGC TTAG 177 5'-reverse-3' AGA GGC AGG GATGAT GTT C Human MCM7 5'-forward-3' TCG GAT TGT GAA GAT GAA CA 132 5'-reverse-3' TATATT TCT GGG GCG ATTGA Human ORC5 5'-forward-3' TGA ACC CGT GGT TAA AGG AG 156 5'-reverse-3' CCC GGA TCT GTG TCA TCT TT Human CDK6 5'-forward-3' AGA GAC AGG AGT GGC CTT GA 185 5'-reverse-3' TGA AAG CAA GCA AAC AGG TG Human CCNE1 5'-forward-3' AGC GGT AAG AAG CAG AGC AG 189 5'-reverse-3' TTT GAT GCC ATC CAC AGA AA Human ANAPC7 5'-forward-3' GGC ACA GAT GTT GGA TCC TT 211 5'-reverse-3' AAT GGC CTT GGC TCC TAAAT Human CDC7 5'-forward-3' TCA GCA GTC CAC CAC AAA AG 169 5'-reverse-3' AGG GCT CTC ATG TGA AATGG Human CDC27 5'-forward-3' TGC TGA CGT GTT TCT TGT CC 134 5'-reverse-3' TTG CAC TGC CTT TCA TTC TG Human ANAPC1 5'-forward-3' TTG GAA TTG CTC TTC CCA TC 107 5'-reverse-3' GGA AAG ATC CTG ACG TCC AA Human ORC2 5'-forward-3' TCA ATG CTC CTC TCA TGT GG 144 5'-reverse-3' TAA GTG GCA GGG ATC CAG AC Human SKP1 5'-forward-3' CAC TGG AGG CTG CTG ACA TA 126 5'-reverse-3' TAG GAG GGA AGC TGG AAA CA Human CYCS 5'-forward-3' CAA AAA CAA GGG CCA GATGT 136 5'-reverse-3' GCT ACC ACA CTG GAC AGC AA Human STEAP3 5'-forward-3' AGA TCC TGG TGG ATG TGA GC 118 5'-reverse-3' ACA TTG AAG GCC TTG ACC AC Human PRKAR2B 5'-forward-3' GAG GGC ACT TGG CAA TTAAA 131 5'-reverse-3' CCA AGG CCA GCA CAT AAC TT Human BCI2 5'-forward-3' ATC GCC CTG TGG ATG ACT GAG 129 5'-reverse-3' CAG CCA GGA GAA ATC AAA CAG AGG Human BIRC3 5'-forward-3' ATGAAT GGA CAG CCC TGA AG 125 5'-reverse-3' GAA TGC TGC ACA GAG ACC AA Human DFFB 5'-forward-3' AAA CCA CCC ACA AGC TCA AC 148 5'-reverse-3' TTA AAA TGA TGC CCA CGT CA Human CASP6 5'-forward-3' GAG TTC GAG ACC AGC CTG AC 110 Fig.
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Mouse Cdc27 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Cdc27 Knockout Project (CRISPR/Cas9) Objective: To create a Cdc27 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Cdc27 gene (NCBI Reference Sequence: NM_145436 ; Ensembl: ENSMUSG00000020687 ) is located on Mouse chromosome 11. 19 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 19 (Transcript: ENSMUST00000093923). Exon 2~7 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 1.13% of the coding region. Exon 2~7 covers 32.93% of the coding region. The size of effective KO region: ~8408 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 19 Legends Exon of mouse Cdc27 Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. The gRNA site is selected outside of these tandem repeats. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1285 bp section downstream of Exon 7 is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Intrinsic Disorder in PTEN and Its Interactome Confers Structural Plasticity and 63
    OPEN Intrinsic Disorder in PTEN and its SUBJECT AREAS: Interactome Confers Structural Plasticity CELLULAR SIGNALLING NETWORKS and Functional Versatility CANCER GENOMICS Prerna Malaney1*, Ravi Ramesh Pathak1*, Bin Xue3, Vladimir N. Uversky3,4,5 & Vrushank Dave´1,2 SYSTEMS ANALYSIS GENE REGULATORY NETWORKS 1Morsani College of Medicine, Department of Pathology and Cell Biology, 2Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, 3Department of Molecular Medicine, 4USF Health Byrd Alzheimer’s Research Institute, Received University of South Florida, Tampa, FL, 33612, USA, 5Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 11 March 2013 Pushchino, Moscow Region, Russia. Accepted 3 June 2013 IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as Published an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically 20 June 2013 disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTEN’s protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that Correspondence and PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. requests for materials Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by should be addressed to its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of V.D.
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Tgfb1 Cell Cycle Arrest Is Mediated by Inhibition of MCM Assembly in Rb-Deficient Conditions Brook S
    Published OnlineFirst September 26, 2018; DOI: 10.1158/1541-7786.MCR-18-0558 Signal Transduction Molecular Cancer Research TGFb1 Cell Cycle Arrest Is Mediated by Inhibition of MCM Assembly in Rb-deficient Conditions Brook S. Nepon-Sixt and Mark G. Alexandrow Abstract Transforming growth factor b1 (TGFb1) is a potent inhib- expression prevents TGFb1 suppression of MCM assembly. itor of cell growth that targets gene-regulatory events, but Mechanistically, TGFb1 blocks a Cyclin E–Mcm7 molecular also inhibits the function of CDC45-MCM-GINS helicases interaction required for MCM hexamer assembly upstream of (CMG; MCM, Mini-Chromosome Maintenance; GINS, Go- CDC10-dependent transcript-1 (CDT1) function. Accordingly, Ichi-Ni-San) through multiple mechanisms to achieve cell- overexpression of CDT1 with an intact MCM-binding domain cycle arrest. Early in G1, TGFb1 blocks MCM subunit expres- abrogates TGFb1 arrest and rescues MCM assembly. The ability sion and suppresses Myc and Cyclin E/Cdk2 activity required of CDT1 to restore MCM assembly and allow S-phase entry for CMG assembly, should MCMs be expressed. Once CMGs indicates that, in the absence of Rb and other canonical med- are assembled in late-G1, TGFb1 blocks CMG activation using iators, TGFb1 relies on inhibition of Cyclin E-MCM7 and MCM a direct mechanism involving the retinoblastoma (Rb) tumor assembly to achieve cell cycle arrest. suppressor. Here, in cells lacking Rb, TGFb1 does not suppress Myc, Cyclin E/Cdk2 activity, or MCM expression, yet growth Implication: These results demonstrate that the MCM assem- arrest remains intact and Smad2/3/4-dependent. Such arrest bly process is a pivotal target of TGFb1 in eliciting cell cycle occurs due to inhibition of MCM hexamer assembly by TGFb1, arrest, and provide evidence for a novel oncogenic role for which is not seen when Rb is present and MCM subunit CDT1 in abrogating TGFb1 inhibition of MCM assembly.
    [Show full text]
  • MCM7 Antibody (R30890)
    MCM7 Antibody (R30890) Catalog No. Formulation Size R30890 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt P33993 Applications Western blot : 0.5-1ug/ml IHC (FFPE) : 0.5-1ug/ml Immunocytochemistry : 0.5-1ug/ml Flow cytometry : 1-3ug/million cells Limitations This MCM7 antibody is available for research use only. Western blot testing of MCM7 antibody and Lane 1: COLO320; 2: SW620; 3: HeLa; 4: 22RVL; 5: 293T; 6: U937; 7: Jurkat; 8: Raji cell lysate. Expected size 80~90KD IHC-P: MCM7 antibody testing of human lung cancer tissue ICC testing of MCM7 antibody and MCF-7 cells ICC testing of MCM7 antibody and HeLa cells Flow cytometry testing of human A431 cells with MCM7 antibody at 1ug/million cells (blocked with goat sera); Red=cells alone, Green=isotype control, Blue= MCM7 antibody. Description Minichromosome Maintenance, s. Cerevisiae, homolog of, 7, also called CDC47, is one of the highly conserved mini-chromosome maintenance proteins (MCM) that are essential for the initiation of eukaryotic genome replication. MCM7 plays a pivotal role in the G1/S phase transition, orchestrating the correct assembly of replication forks on chromosomal DNA and ensuring that all the genome is replicated once and not more than once at each cell cycle. The gene contains 15 exons. The miRNAs MIR106B, MIR93, and MIR25 are clustered in a 5-prime to 3-prime orientation within intron 13.
    [Show full text]
  • A 20S Complex Containing CDC27 and CDC16 Catalyzes the Mitosis-Specific Conjugation of Ubiquitin to Cyclin B
    Cell, Vol. 81,279-288, April 21, 1995, Copyright© 1995 by Cell Press A 20S Complex Containing CDC27 and CDC16 Catalyzes the Mitosis-Specific Conjugation of Ubiquitin to Cyclin B Randall W. King,*t Jan-Michael Peters,*t cyclin degradation is required to exit mitosis (Surana et Stuart Tugendreich,$ Mark Rolfe,§ Philip Hieter,$ al., 1993; Holloway et al., 1993). Treatments that interfere and Marc W. Kirschnert with the proteolysis of endogenous cyclin B, however, ar- tDepartment of Cell Biology rest cell division earlier, at anaphase (Holloway et al., Harvard Medical School 1993). This discrepancy can be explained by hypothesiz- Boston, Massachusetts 02115 ing that chromosome segregation and cyclin proteolysis $Department of Molecular Biology and Genetics depend upon common components. Support for this idea Johns Hopkins School of Medicine has emerged recently from studies in budding yeast, in Baltimore, Maryland 21205 which CDC16 and CDC23, genes required for progression §Mitotix, Incorporated through anaphase, have been shown to be required for One Kendall Square the proteolysis of B-type cyclins (Irniger et al., 1995 [this Cambridge, Massachusetts 02139 issue of Cell]). The proteins encoded by these genes form a complex with the CDC27 protein (Lamb et al., 1994), a homolog of which is also required for anaphase progres- Summary sion in mammalian cells (Tugendreich et al., 1995 [this issue of Cell]). Cyclin B is degraded at the onset of anaphase by a Biochemical evidence suggests that cyclin proteolysis ubiquitin-dependent proteolytic system. We have frac- is mediated by the ubiquitin pathway: cyclin B-ubiquitin tionated mitotic Xenopus egg extracts to identify com- conjugates can be observed in mitotic, but not interphase, ponents required for this process.
    [Show full text]
  • Cell Cycle-Dependent Modification of Pot1 and Its Effects on Telomere
    Cell cycle-dependent modification of Pot1 and its effects on telomere function Vitaliy Kuznetsov Thesis submitted towards the degree of Doctor of Philosophy University College of London Department of Biology London, WC1E 6BT The program of research was carried out at Cancer Research U.K. Laboratory of Telomere Biology 44 Lincoln’s Inn Fields, London, U.K. WC2A 3PX Supervisor: Dr Julia Promisel Cooper September 2008 I, Vitaliy Kuznetsov, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ABSTRACT Telomere functions are tightly controlled throughout the cell cycle to allow telomerase access while suppressing a bona fide DNA damage response (DDR) at linear chromosome ends. However, the mechanisms that link cell cycle progression with telomere functions are largely unknown. Here we show that a key S-phase kinase, DDK (Dbf4-dependent protein kinase), phosphorylates the telomere binding protein Pot1, and that this phosphorylation is crucial for DNA damage checkpoint inactivation, the suppression of homologous recombination (HR) at telomeres, and the prevention of telomere loss. DDK phosphorylates Pot1 in a very conserved region of its most amino-terminal-proximal OB fold, suggesting that this regulation of telomere function may be widely conserved. Mutation of Pot1 phosphorylation sites leads to telomerase independent telomere maintenance through constant HR, as well as a dependence of telomere maintenance proteins involved in checkpoint activation and HR. These results uncover a novel and important link between DDR suppression and telomere maintenance. The failure in Pot1 phosphorylation and DDR inactivation could potentially lead to uncontrolled cell proliferation without a requirement for telomerase by switching cells to HR dependent telomere homeostasis.
    [Show full text]
  • The Genome of Schmidtea Mediterranea and the Evolution Of
    OPEN ArtICLE doi:10.1038/nature25473 The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms Markus Alexander Grohme1*, Siegfried Schloissnig2*, Andrei Rozanski1, Martin Pippel2, George Robert Young3, Sylke Winkler1, Holger Brandl1, Ian Henry1, Andreas Dahl4, Sean Powell2, Michael Hiller1,5, Eugene Myers1 & Jochen Christian Rink1 The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms. Rapid regeneration from tiny pieces of tissue makes planarians a prime De novo long read assembly of the planarian genome model system for regeneration. Abundant adult pluripotent stem cells, In preparation for genome sequencing, we inbred the sexual strain termed neoblasts, power regeneration and the continuous turnover of S. mediterranea (Fig. 1a) for more than 17 successive sib- mating of all cell types1–3, and transplantation of a single neoblast can rescue generations in the hope of decreasing heterozygosity. We also developed a lethally irradiated animal4. Planarians therefore also constitute a a new DNA isolation protocol that meets the purity and high molecular prime model system for stem cell pluripotency and its evolutionary weight requirements of PacBio long-read sequencing12 (Extended Data underpinnings5.
    [Show full text]
  • Table S2.Up Or Down Regulated Genes in Tcof1 Knockdown Neuroblastoma N1E-115 Cells Involved in Differentbiological Process Anal
    Table S2.Up or down regulated genes in Tcof1 knockdown neuroblastoma N1E-115 cells involved in differentbiological process analysed by DAVID database Pop Pop Fold Term PValue Genes Bonferroni Benjamini FDR Hits Total Enrichment GO:0044257~cellular protein catabolic 2.77E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 537 13588 1.944851 8.64E-07 8.64E-07 5.02E-07 process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0051603~proteolysis involved in 4.52E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 534 13588 1.93519 1.41E-06 7.04E-07 8.18E-07 cellular protein catabolic process ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, USP17L5, FBXO11, RAD23B, NEDD8, UBE2V2, RFFL, CDC GO:0044265~cellular macromolecule 6.09E-10 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 609 13588 1.859332 1.90E-06 6.32E-07 1.10E-06 catabolic process ISG15, RBM8A, ATG7, LOC100046898, PSENEN, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4, ASB8, DCUN1D1, PSMA6, SIAH1A, TRIM32, RNF138, GM12396, RNF20, XRN2, USP17L5, FBXO11, RAD23B, UBE2V2, NED GO:0030163~protein catabolic process 1.81E-09 MKRN1, PPP2R5C, VPRBP, MYLIP, CDC16, ERLEC1, MKRN2, CUL3, 556 13588 1.87839 5.64E-06 1.41E-06 3.27E-06 ISG15, ATG7, PSENEN, LOC100046898, CDCA3, ANAPC1, ANAPC2, ANAPC5, SOCS3, ENC1, SOCS4,
    [Show full text]