Introduction for the 46Th Rankine Lecture

Total Page:16

File Type:pdf, Size:1020Kb

Introduction for the 46Th Rankine Lecture [doi: 10.1680/geot.2008.58.9.693] Introduction for the 46th Rankine Lecture The 46th Lecture of the British Geotechnical Society was given by Professor Robert J. Mair at Imperial College London on 22 March 2006. The following introduction was given by Professor R. N. Taylor, City University Mr Chairman, distinguished guests, ladies and gentlemen, it is both an honour and an immense pleasure to introduce this evening Professor Robert Mair, the British Geotechnical Association’s 46th Rankine Lecturer. Robert James Mair was born in 1950 and brought up in Cambridge, a place that has had a deep influence on his life and career. He read engineering at Clare College, and was inspired by the lectures on soil mechanics given by Peter Wroth. On graduating in 1971 he was determined to work for a company with geotechnical engineering prominent in its portfolio. That company was Scott Wilson Kirkpatrick and Partners, and it was a happy coincidence that on his first day in their offices he was given a desk next to David Hight, who was to become one of Robert’s closest colleagues and influential friends. (And I would like to say now that David is very disappointed to have been called overseas and is not able to be here today.) It was not too long before Robert moved to the Hong Kong office of SWK, and in those heady days experienced a truly dynamic engineering environment, which proved to be a great beginning for an engineer fully tuned to learning quickly. Robert’s venture to Hong Kong came to an end with an offer from Andrew Schofield to undertake research at Cam- bridge University. Scott Wilson Kirkpatrick agreed to second Robert to the Cambridge Soils Group, where major research was being supported by Myles O’Reilly of the then Trans- Professor R. J. Mair port and Road Research Laboratory, who was keen to get some science into the understanding of tunnel stability and manner of technical, sporting, political or personal discus- the development of ground movements. It started Robert’s sions. professional association with tunnelled excavations for which Robert’s professional expertise has seen him involved with he is now world renowned. a wide range of projects, and he has accomplished a great Robert became the natural leader of the informal tunnel- deal. With Chris Padfield he produced CIRIA Report 104 on ling and buried pipes research group at Cambridge, and the Stability of retaining walls, which became one of created a strong sense of team responsibility, leading to CIRIA’s most used publications and was hugely influential. sound, well-organised research. I count myself fortunate to He was closely involved with the Jubilee Line Extension have become part of that group, and to have got to know Project, Crossrail, the Channel Tunnel Rail Link, London Robert at that time. They were great times, with Robert Underground’s Angel Station reconstruction project and the clearly the team leader, working hard to get the most out of Waterloo escalator tunnel, the last leading to the develop- people but also creating a fun atmosphere, including arran- ment and use of a new technique for the control of tunnel- ging cricket competitions with the Imperial College soil induced ground movements termed ‘compensation grouting’, mechanics group. Robert’s own research made use of the a phrase coined by David Hight. In fact there is barely a then relatively new technique of geotechnical centrifuge tunnel in London that does not have Robert’s name on it. modelling. This resulted in seminal research on tunnel Robert’s breadth of expertise, sense of organisation and stability, perhaps remaining the best illustration of centrifuge diplomatic skills have made him a natural choice for many modelling applied directly to geotechnical design, and which expert review panels, advisory panels and other committees is still regularly cited today. including, importantly for me, the Board of the International Robert returned to Scott Wilson Kirkpatrick in 1980, but Society for Soil Mechanics and Geotechnical Engineering. it was not too long before he was seeking new challenges. Throughout, Robert has retained an interest in teaching In 1983 an opportunity arose for Robert to join forces and education. He was a key contributor to the short courses with David Hight and Peter Vaughan, both then of Imperial on tunnelling in soft ground given at City University, and in College, to create a specialist geotechnical office known to 1997 became Royal Academy of Engineering Visiting Pro- us all now as the Geotechnical Consulting Group. There fessor at Cambridge University. The lure of Cambridge was was no certainty then that this adventure could ever be again taking hold, and in 1998 he moved back there, this successful, but we have witnessed the company grow from time as Professor of Geotechnical Engineering. He quickly its origins in the small two-room office in Kendrick Mews took charge of the Soil Mechanics Group and instilled a to what is now one of the world’s leading specialist strong team spirit, ensuring a well-organised, highly moti- geotechnical companies. It has always been a pleasure to vated and committed research group. His own research visit the GCG offices. I find there a convivial atmosphere projects focused on practical geotechnical engineering pro- that so strongly reflects Robert’s character, and have en- blems, and allowed the Centre for Construction Processes to joyed many a picnic lunch in the kitchen, engaging in all be created in the Schofield Centre at the west Cambridge 693 694 MAIR site. He clearly made his mark elsewhere on the Cambridge of people, immensely supportive, and always prepared. To scene, and it was not long before he came to the attention these talents he adds those of a fantastic mimic and regularly of the fellows at Jesus College, who elected him Master in does ‘takes’ on many characters, a particular speciality being 2001. his wonderful impersonation of the late Bill Ward. With all these responsibilities, it seems hard to imagine He is a brilliant communicator, and has a talent for there is any time to relax. In his spare time he will enjoy a simplifying problems while retaining the key issues. He has game of tennis or a round of golf and go sailing when the an undying enthusiasm for the subject of soil mechanics and opportunity arises. But, more importantly, Robert always its practice in engineering, and he is genuinely interested in makes sure he has time for his family—his wife Margaret understanding and solving problems that the ground throws and children Julia and Patrick. up. With this he has established a reputation for thorough- Robert is truly one of the good guys. He is always friendly ness and professionalism in his reports, research and teach- and hospitable, always polite and generous, and always inter- ing. I am sure these characteristics will be evident in this ested in the people he meets. He is invariably calm and evening’s presentation, and with this in mind it is with great relaxed, and puts people at ease. He is exceptionally well pleasure and anticipation that I call upon Professor Robert organised, a great team leader who naturally gets the best out Mair to deliver the 46th Rankine Lecture. Mair, R. J. (2008). Ge´otechnique 58, No. 9, 695–736 [doi: 10.1680/geot.2008.58.9.695] Tunnelling and geotechnics: new horizons R. J. MAIR* New developments in both the theory and the practice of La communication porte sur des de´veloppements nou- tunnelling are covered in the lecture. The important veaux dans la the´orie et la pratique du percement de relationship between tunnelling and geotechnics is high- tunnels, et met en valeur les rapports existants entre le lighted, and recent advances in research and practice are percement de tunnels et la ge´otechnique. On y de´crit des described, drawing on model studies, theoretical develop- progre`sre´alise´sre´cemment, de´coulant d’e´tudes de mod- ments and field measurements from case histories from e`les, de de´veloppements the´oriques et de mesures sur around the world. Simplified plasticity models are pre- place issus d’histoires de cas dans le monde entier. Des sented that can be used by designers to assess ground mode`les a` plasticite´ simplifie´e, pouvant eˆtre utilise´s par movements and tunnel lining loads in complex ground des concepteurs pour e´valuer les mouvements du sol et conditions. The important role of pilot tunnels and in situ les charges des reveˆtements du tunnel dans des conditions measurements to validate such models, drawing on a case complexes du sol, sont de´crits. On y de´crit e´galement le history from Bolu, Turkey, and on other tunnelling pro- roˆle important que jouent des tunnels pilote et des jects, is described. Recent technical advances in earth mesures in-situ dans la validation de ces mode`les, sur la pressure balance tunnelling are considered, illustrated by base d’une histoire de cas a` Bolu, en Turquie, et de measurements from the Channel Tunnel Rail Link pro- projets de percement de tunnels divers. On examine des ject, with emphasis on key factors influencing volume progre`s techniques re´alise´sre´cemment dans le percement loss, such as face pressure, soil conditioning and effective de tunnels avec e´quilibre de la pression terrestre (EPB), screw conveyor operation. A recent case history in Bolog- illustre´s par des mesures effectue´es dans le cadre de la na is described, in which the innovative use of directional liaison ferroviaire du Tunnel sous la Manche, en mettant drilling to install curved grout tubes was employed for a l’accent sur des facteurs cle´ influant sur des pertes de compensation grouting project in granular soils.
Recommended publications
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • ISSMGE Bulletin
    ISSMGE Bulletin Volume 7, Issue 6 December 2013 International Society for Soil Mechanics and Geotechnical Engineering If the quality of the distributed file is not satisfactory for you, please access ISSMGE website and download a better one. www.issmge.org I NSIDE T HIS I SSUE 1 R Frank President Message 4 Report ICSMGE Paris 9 Report on iYGEC MESSAGE FROM THE NEW ISSMGE PRESIDENT 12 Nash Medal 14 Foundation Report 42 DVD for the Special Issue Prof. Dr.-Ing. Roger Frank 44 Hungarian Society Books 46 Transportation Journal Dear Members of ISSMGE, NEWS ON RECENT Dear Colleagues, CONFERENCES 47 5th KGS-JGS It is a great honour and privilege 48 Geosynthetic Belogna for me to have been elected by the 52 Chinese Taipei Member Societies of ISSMGE as your 59 Auckland President for the 4-year term from 61 ISAFE Singapore 2013 to 2017. The election took place during the Council meeting, UPCOMING CONFERENCES just before the opening of the 18th 66 Offshore Geotech ISFOG International Conference on Soils 67 Poppi Course Mechanics and Geotechnical OTHERS Engineering (18 ICSMGE) in Paris, 2- 68 Briaud Book 6 September 2013. 69 Event Diary 76 Corporate Associates Before updating you with the 80 Foundation Donors various matters which might be of 82 ISSMGE’s International interest to you, I would like to acknowledge the great work and achievements of Journal of Geoengineering my two predecessors, President Pedro Sêco e Pinto and President Jean-Louis Case Histories Briaud. I was a member of the Board during their two mandates and it was a real pleasure to work under their leadership, with the efficient assistance of our TECHNICAL ARTICLE Secretary General Neil Taylor.
    [Show full text]
  • Downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE)
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Modelling and testing Modélisation et expérimentation David Muir Wood School of Science, Engineering, University of Dundee, United Kingdom, [email protected] ABSTRACT: All soil testing is performed in the context of an implicitly or explicitly assumed (constitutive) model for the soil. The interface between modelling and testing is challenged by deficiencies of the testing and by deficiencies of the model. Many testing configurations lead to inadvertent or inevitable inhomogeneity, so that a soil samples behaves as a system and not a single element. But models are appropriate simplifications of reality and are inevitably deficient. The more severe the deficiency the harder it becomes to calibrate the model against experimental data. Even for more elaborate models, the conjectures on which they are based are rarely subjected to testing regimes which deliberately set out to refute those conjectures. No matter how extensive our testing of a model against laboratory data, a subsequent application will certainly take it into an unknown region in which it is to be hoped that no unintended instabilities will appear. RÉSUMÉ : Tous les essais de mécanique de sols sont effectués dans un contexte d’existence d'un modèle du sol implicitement ou explicitement supposé.
    [Show full text]
  • XIX. Széchy Károly Memorial Lecture
    XIX. Széchy Károly Memorial Lecture INTERACTION BETWEEN STRUCTURAL AND GEOTECHNICAL ENGINEERS John Burland Imperial College London The booklet is published by Hungarian National Committee of the International Committee on Soil Mechanics and Geotechnical Engineering (ISSMGE) (Hungarian Association of Geotechnics) 1111 Budapest, Műegyetem rkp. 3. Kmf 10. March of 2013 Edited by : József Mecsi Responsible for publication: Dr. Mecsi József Press: Kontraszt Plusz Kft, Pécs Issued in 100 copies The authors of the articles are entitled to full copyright Participants ont the Memorial Lecture CONTENT Evening meeting –IstructE/ICE annual joint meeting held on 26 April 2006 at ICE, One Great George Street, London SW1’ Interaction between structural and geotechnical engineers Based on a paper published in The Structural Engineer 18 April 2006 John Burland 4-28 Interaction between structural and geotechnical engineers John Burland presentation on the XIX. Széchy Károly Memorial Lecture Synopsis 29 Curriculum vitae of Professor John Burland 29 Interview. Questioner: József Mecsi, Respondent: John Burland First published in „Mérnökújság February 2013.” 30-31 John Burland presentation on the XIX. Széchy Károly Memorial Lecture Budapest, 15th March 2013 Great Hall of the Hungarian Academy of Sciences (Budapest V. Széchényi square 9., II. floor) 32-52 Personal reflections on the teaching of soil mechanics J.B.Burland First published in 53-72 Interaction between structural and geotechnical engineers John Burland, CBE DSc(Eng), FREng, FRS, FIStructE, FICE, FCGI Synopsis There are many situations for which interaction between structure and ground has to be considered. This involves important interactions between specialist structural and geotechnical engineers. During his career the author has encountered profound differences in approach between structural and geotechnical engineers often leading to a lack of understanding and difficulties in communication.
    [Show full text]
  • International Society for Soil Mechanics and Geotechnical Engineering
    INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. Organization of the conference Organisation du congres OFIGANIZING COMMITTEE / COMITE D'ORGANISATION H.Bolton Seed Chairman/ President R.T.Lawson Wce-Chairman for Organization /Woe-President pour l'Organisation J.K.Mitchell Woe-Chairman tor Program/ Woe-President pour le Programme C.Ries & PTTringale Secretaries / Secretaires Elizabeth Yee Manager/ Administrateur TASK COMMITTEES / COMITES SPECIFIOUES R.B. Peck Program Committee / Comité de Programme WFMarcuson, lll Conference Proceedings Committee/ Comité des Comptes Rendus du Congres J.M.Duncan Bulletins Committee/ Comité des Bulletins G.M.Reynolds Finance Committee/ Comité des Hnances B.B.Gordon Committee on Exhibits/ Comité des Expositions R.Lundgren Home Hospitality Committee / Comité d'Accueil a Domicile VlLEnkeboll Simultaneous Translation Committee/ Comité de Traduction Simultanée R.M.Pyke Post-Conference Tours Committee/ Comité des Excursions suivant le Congres J.Lysmer, TL.Brekke Banquet Committee / Comité de Banquet N.Sitar Program Support Committee/ Comite de Support du Programme R.D.Darragh Reception Committee / Comité
    [Show full text]
  • Historical Background and Evolution of Soil Mechanics
    Philotheos Lokkas, Ioannis Chouliaras, WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION Theodoros Chrisanidis, Dimitrios Christodoulou, DOI: 10.37394/232010.2021.18.10 Emmanouil Papadimitriou, Evangelos Paschalis Historical background and evolution of Soil Mechanics PHILOTHEOS LOKKAS1, IOANNIS CHOULIARAS2, THEODOROS CHRISANIDIS3, DIMITRIOS CHRISTODOULOU4, EMMANOUIL PAPADIMITRIOU5, EVANGELOS PASCHALIS6 1Emeritus Professor, University of Thessaly, Greece 2Profeessor, General Department of Larissa, University of Thessaly, Greece 3PhD Civil Engineer, Post-Doctoral Researcher (Dr., MSc DIC) 4Environmeral Department of Larissa, University of Thessaly, Greece 5 Civil Engineering T.E, University of Thessaly 6Msc Civil Engineer T.E Abstract: - The behavior of soil either as a building material or as a load receiver is particularly important and presents a paramount significance in both infrastructure and building construction. Geotechnical engineering has shown a rapid development over the last fifty years and holds a prominent position in all scientific fields of engineers. This paper mainly aims at the historical background along with the progress made on Soil Engineering as an important branch of Surveyors, Civil and Mining Engineers, where, through an important citation of technical works and constructions over time, may be considered as a significant tool for teaching and education of students. Key-Words: - Foundation, Infrastructure, Geotechnical Education, Soil mechanics, Mining Engineering Received: July 1, 2021. Revised: July 28, 2021. Accepted: July 30, 2021. Published: August 4, 2021. 1 Introduction is a product of laboratory and field tests and Soil Mechanics is an application of the statutory laws geotechnical exploration in general. The test results of engineering and hydraulics to soil material. The are useful to understand the behavior and properties soil, compared to many other materials studied in of the soil with a view to their final incorporation into engineering, such as concrete, steel, wood has two the design process.
    [Show full text]
  • Reflections on Victor De Mello, Friend, Engineer and Philosopher
    Reflections on Victor de Mello, Friend, Engineer and Philosopher John B. Burland Abstract. The author first met Victor de Mello in 1975 at the 6th African Regional Soil Mechanics Conference in Durban, South Africa. For over 30 years he has retained a close personal friendship with this remarkable man and his family. The First Victor de Mello Lecture illuminates something of him as a person, an engineer and a philosopher. It describes his upbringing and schooling in India, his university education at MIT and some highlights of his professional career as an international civil engineer specialising in dams and geotechnics. The key messages from some of his major lectures are presented and discussed. Engineers of all disciplines have much to learn from this brilliant, inspiring and cultured man. Above all we can learn from his insistence that we are human beings first, engineers second and specialists third - the order being very important. Keywords: Victor de Mello, geotechnics, engineer, philosopher. 1. Introduction day we entered the Kruger National Game Park and were thrilled by the wide variety of birds and game that we saw Words cannot adequately express how privileged I including hippopotamus and elephant. The evening was feel to have been invited to deliver this first lecture in hon- warm and we had a braaivleis (barbecue) under a clear sky, our of Victor de Mello. But a huge responsibility rests on heavy with the stars of the southern hemisphere and sere- my shoulders for I have no doubt at all that the Victor de naded by the croaking of frogs and the chirping of crickets.
    [Show full text]
  • 52Nd Rankine Lecture: Performance Based Design in Geotechnical
    Blog Situs Teknik Bahasan dan Diskusi Ilmu Teknik http://blog.situsteknik.com 52nd Rankine Lecture: Performance Based Design in Geotechnical Engineering oleh HW Rankine Lecture yang diselenggarakan setiap tahun oleh British Geotechnical Association (BGA) dan Institution of Civil Engineers (ICE) adalah kuliah yang selalu di tunggu-tunggu oleh para geotechnical engineers baik itu dari kalangan akademisi maupun praktisi. Umumnya, Rankine Lecture disampaikan oleh seorang Professor atau praktisi dari sebuah universitas atau lembaga/perusahaan yang hasil risetnya memberikan kontribusi secara signifikan dalam perkembangan ilmu geoteknik. Kuliah ini dipandang sebagai salah satu kuliah yang sangat bergengsi di bidang geoteknik. Mungkin bisa disamakan dengan anugerah Nobel Laureate prize atau Pulitzer prize. Isi dari kuliahnya tergantung dari keahlian pembicaranya, seputar perkembangan riset dan praktik geoteknik saat ini dan juga state-of-the-art dari topik-topik spesifik yang disampaikan. Rankine Lecture pertama diberikan oleh Prof. Arthur Casagrande pada tahun 1961 dengan topik Control of seepage through foundations and abutments of dams. Banyak tokoh-tokoh terkenal geoteknik telah memberikan kuliah ini. Daftarnya dapat dilihat disini http://en.wikipedia.org/wiki/Rankine_Lecture. Kuliah yang diberikan secara lisan lalu dipublikasikan di jurnal Geotechnique beberapa bulan kemudian. Sejarah Rankine LectureNama Rankine Lecture berasal dari seorang profesor British yang memberikan kontribusi signifikan dalam perkembangan ilmu mekanika tanah pada abad ke-19. Prof. W.J.M. Rankine (1820-1872) adalah professor teknik sipil di University of Glasgow, yang dikatakan sebagai seorang insinyur pertama dari British yang memberikan kontribusi signifikan di bidang Mekanika Tanah. Prof. Rankine dikenal melalui teori tegangan lateral tanah pada dinding penahan tanah. Semua mahasiswa teknik sipil yang belajar mekanika tanah pasti mengenai teori Rankine dalam menghitung tegangan tanah aktif (Ka) dan tegangan tanah pasif (Kp).
    [Show full text]
  • Geotechnics, Energy and Climate Change: the 56Th Rankine Lecture
    Jardine, R. J. (2020). Géotechnique 70, No. 1, 3–59 [https://doi.org/10.1680/jgeot.18.RL.001] Geotechnics, energy and climate change: the 56th Rankine Lecture RICHARD J. JARDINEÃ Geotechnical engineering has matured sufficiently to contribute to resolving some of society’s grand challenges. The 56th Rankine Lecture considered one of the most pressing global problems: maintaining vital energy supplies while also recognising, mitigating and reducing the climate consequences of fossil fuel consumption. This written version reports geotechnical research relating to these wide-ranging issues, considering paired topics within its three main parts and illustrating these with specific practical examples. Part 1 focuses on supporting offshore hydrocarbon production, considering advances in understanding and designing the driven piles that support most continental shelf platforms, before moving to the large underwater landslides that can affect deeper water developments. Part 2 describes investigations into the geotechnical impact of climate change in a permafrost region and a peatland study that contributes to alleviating flood risks exacerbated by climate change. Part 3 outlines research that is improving the economics of renewable offshore wind energy for multi-pile and monopile supported turbines. Integrating geology and rigorous analysis with advanced laboratory and field experiments is shown to be essential to resolving the complex geotechnical problems considered, as is careful full-scale checking and monitoring. Close cooperation with co-workers from industry and academia was central to the studies described and the contributions of many collaborators are emphasised. The concluding section identifies examples of significant questions from each of the six topic areas that remain to be resolved fully.
    [Show full text]
  • Robert V. Whitman
    CONNECTIONS The EERI Oral History Series Robert V. Whitman Robert Reitherman Interviewer CONNECTIONS The EERI Oral History Series Robert V. Whitman CONNECTIONS The EERI Oral History Series Robert V. Whitman Robert Reitherman, Interviewer Earthquake Engineering Research Institute Editor: Gail Hynes Shea, Berkeley, California, www.gailshea.com Cover and book design: Laura H. Moger, Moorpark, California, www.lauramoger.com Copyright 2009 by the Earthquake Engineering Research Institute The publication of this book was supported by FEMA/U.S. Department of Homeland Security under grant #EMW-2009-RC-51-K008. All rights reserved. All literary rights in the manuscript, including the right to publish, are reserved to the Earthquake Engineering Research Institute. No part may be reproduced, quoted, or trans- mitted in any form without the written permission of the Executive Director of the Earthquake Engineering Research Institute. Requests for permission to quote for publication should include identification of the specific passages to be quoted, anticipated use of the passages, and identifica- tion of the user. The opinions expressed in this publication are those of the oral history subject and do not neces- sarily reflect the opinions or policies of the Earthquake Engineering Research Institute. Published by the Earthquake Engineering Research Institute 499 14th Street, Suite 320 Oakland, CA 94612-1934 Tel: (510) 451-0905 Fax: (510) 451-5411 E-mail: [email protected] Website: http://www.eeri.org EERI Publication Number: OHS-17 Library of Congress Cataloging-in-Publication Data Whitman, Robert V., 1928- Robert V. Whitman / Robert Reitherman, interviewer. p. cm. -- (The EERI oral history series) “EERI publication number: OHS-17.” Includes bibliographical references and index.
    [Show full text]
  • Embankment Dams
    Design Standards No. 13 Embankment Dams Chapter 13: Seismic Analysis and Design Phase 4: Final U.S. Department of the Interior Bureau of Reclamation May 2015 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Design Standards Signature Sheet Design Standards No. 13 Embankment Dams DS-13(13)-8: Phase 4: Final May 2015 Chapter 13: Seismic Analysis and Design U.S. Department of the Interior Bureau of Reclamation May 2015 Foreword Purpose The Bureau of Reclamation (Reclamation) design standards present technical requirements and processes to enable design professionals to prepare design documents and reports necessary to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. Compliance with these design standards assists in the development and improvement of Reclamation facilities in a way that protects the public's health, safety, and welfare; recognizes needs of all stakeholders; and achieves lasting value and functionality necessary for Reclamation facilities. Responsible designers accomplish this goal through compliance with these design standards and all other applicable technical codes, as well as incorporation of the stakeholders’ vision and values, that are then reflected in the constructed facilities. Application of Design Standards Reclamation design activities, whether performed by Reclamation or by a non-Reclamation entity, must be performed in accordance with established Reclamation design criteria and standards, and approved national design standards, if applicable.
    [Show full text]
  • ISSMGE Bulletin
    ISSMGE Bulletin Volume 2, Issue 2 June 2008 International Society for Soil Mechanics and Geotechnical Engineering www.issmge.org A Message from the Vice President By Professor Roger Frank To write any kind of ‘comprehensive’ or ‘unified’ view about Europe is always a difficult task. At least we, geotechnical engineers members of ISSMGE, do not I NSIDE T HIS I SSUE have the same problems as many of our politicians who spend (too) much time and effort in defining what exactly the borders of Europe are... Indeed, for 1 A Message from the ISSMGE, the situation is very clear: the European region of ISSMGE comprises 35 Vice President Member Societies (representing 36 countries, as there is one single Member Society for both the Czech Republic and Slovakia). The 35th Member Society to join ISSMGE was Georgia (in 2007). The total of individual members is now 3 Reminiscences around 7900. Thus, Europe is not far from representing 45% of ISSMGE! 7 TC Activity The activities concerning geotechnical engineering on the European continent may differ strongly when moving from one country to the other. This is not only due to the fact that the economic situations and, in particular, the construction sector can vary a lot, even inside the zone using the 10 Activity of Member single currency, i.e. the Euro, but also due to the varying geological and geotechnical conditions throughout the continent. Some countries, or some of their areas, need an important geotechnical 11 News ‘input’ into the projects as, in some other countries or areas, the ‘effort’ can be more limited, due to simpler or better known ground conditions.
    [Show full text]