Characterizing Neuronal and Cardiac Isoforms of Voltage-Gated Cav1.2

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing Neuronal and Cardiac Isoforms of Voltage-Gated Cav1.2 Characterizing Neuronal and Cardiac Isoforms of Voltage-Gated CaV1.2 CACNA1C Calcium Channels Kristin Marie Webster B.A., Hamilton College, 2009 Dissertation submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Department of Neuroscience at Brown University Providence, RI May 2015 Copyright © by Kristin Marie Webster. All rights reserved. ii This dissertation by Kristin Marie Webster is accepted in its present form by the Department of Neuroscience as satisfying the dissertation requirements for the Degree of Doctor of Philosophy. Date ___________ ________________________ Diane Lipscombe, Advisor Neuroscience Department Brown University Recommended to the Graduate Council Date ___________ ________________________ Anne Hart, Reader Neuroscience Department Brown University Date ___________ ________________________ Eric Morrow, Reader Molecular Cell Biology & Biochemistry Department Brown University Date ___________ ________________________ Anjali Rajadhyaksha, Reader Pediatrics Department Weil Cornell College of Medicine Approved by the Graduate Council Date ___________ ________________________ Peter Weber Dean of the Graduate School Brown University iii Kristin M. Webster Born July 29th, 1987 Princeton, NJ Brown University Residence Box GL-N, Neuroscience Graduate Program 153 Governor St Unit 2 Providence, RI 02912 USA Providence, RI 02906 USA Phone: +1 (401) 863-2615 Phone: +1 (570) 575-3651 Email: [email protected] Email: [email protected] EDUCATION Brown University Providence, RI PhD candidate in Neuroscience 2009 - Present Advisor: Professor Diane Lipscombe, PhD Hamilton College Clinton, NY BA, magna cum laude, Neuroscience, Phi Beta Kappa 2009 FELLOWSHIPS Ruth L. Kirschstein National Research Service Award from the NIMH 2012-2014 "Neuronal-Specific Splicing of CaV1.2 L-type Calcium Channels" REFFERRED PUBLICATIONS Ruz, M., Moser, A., & Webster, K. (2011). Social Expectations Bias Decision-Making in Uncertain Inter-Personal Situations. PLoS ONE. 6(2). RESEARCH TRAINING The Genome Access Course 2011 Two day intensive course at Cold Spring Harbor Laboratories to familiarize participants with online tools for bioinformatics and analysis of genomic data RESEARCH EXPERIENCE Biology Department, Hamilton College 2008-2009 Research Assistant • Examined the role of the insect neurotransmitter octopamine in an olfactory learning paradigm in Drosophila melanogaster larvae • Completed a senior thesis with honors Brain and Cognition Lab, Oxford University Spring 2008 Research Assistant • Ran participants and performed data analysis in an experiment examining the role of social biases in decision making iv Biology Department, Hamilton College Summer 2007 Research Assistant • Conducted experiments on octopamine synthesis and the enzyme tyramine-β-hydroxylase through Western Blot analysis in Apis mellifera Biology Department, Misericordia University Summer 2006 Research Assistant • Tested coatings for glass medical containers INVITED SEMINARS Hamilton College 2013 POSTERS/PRESENTATIONS Webster, K and Lipscombe, D (2014). Different forms of calcium channel CaV1.2 proteins are expressed in brain and heart. Miami 2014 Winter Symposium: The molecular basis of brain disorders. Webster, K and Lipscombe, D (2013). Different forms of calcium channel CaV1.2 proteins are expressed in brain and heart. Society for Neuroscience Annual Meeting. Webster, K and Lipscombe, D (2013). Head vs. Heart: A Physiological Characterization of the Neuronal and Cardiac Isoforms of CaV1.2. Brown University Neuroscience Graduate Program Annual Retreat. Awarded 2nd place. CACNA1C calcium channels: Multiple isoforms expressed in different tissues. Brown University Neuroscience Graduate Program In House Seminar Series (2013). Webster, K and Lipscombe, D (2012). Investigating Nova-2’s Regulation of Alternative Splicing in CaV1.2 pre-mRNA and Neuronal Function. Brown-NIH GPP Retreat. Investigating Nova-2’s Regulation of Alternative Splicing in CaV1.2 pre- mRNA and Neuronal Function. Brown Univ. Neuroscience Graduate Program’s Seminar Series (2012). Webster, K, Andrade, A, and Lipscombe, D (2012). CNS- specific isoforms of the calcium channel CACNA1C gene regulated by Nova2. Society for Neuroscience Annual Meeting. Using Next Generation Sequencing to Investigate Nova-2’s Regulation of Alternative Splicing in CaV1.2 pre-mRNA. Brown Univ. Neuroscience Graduate Program Seminar Series (2011). v TEACHING EXPERIENCE Sheridan Center for Teaching and Learning, Brown University Certificate I: Sheridan Teaching Seminar – Reflective teaching • Program in developing a reflective teaching practice 2010-2011 • Discussion leader 2011-2014 Certificate III: The Professional Development Seminar 2013-2014 • Program in developing a teaching portfolio and preparing for the academic job market • Teaching portfolio includes: teaching philosophy statement, sample syllabus, cover letter, CV, broader impact statement Certificate IV: The Teaching Consultant Program • Learning to provide constructive, cross-disciplinary feedback and analysis as a teaching consultant • Teaching Consultant 2011-2012 • Head Teaching Consultant for the Life and Physical Sciences 2012- 2014 o Leads the Certificate IV training meetings with the Head Teaching Consultant for the Humanities and Social Sciences Faculty Trainer in Peer Observation 2012-2014 • Training faculty from various departments in the scholarship of cross-disciplinary peer observations Neuroscience Department, Brown University Teaching Assistant, Introduction to Neuroscience Fall 2010 • Led weekly recitation sections, graded exams, coordinated final review/fundraising event Psychology Department, Hamilton College Teaching Assistant, Statistical Methods in Psychology 2007-2009 Chemistry Department, Hamilton College Teaching Assistant, Intro to Organic Chemistry Laboratory Course Spring 2010 STUDENT MENTORING Barrett Weiss, undergraduate summer researcher Summer 2013 Sophia Lin, undergraduate senior thesis student Fall 2012-Spring 2013 Rachel Stevenson, rotating graduate student Fall 2012 Patrick O’Hern, rotating graduate student Summer 2012 Natalie Chavez, rotating graduate student Spring 2011 vi AWARDS Graduate Student Travel Award to attend ISSoTL conference 2013 Concentration Honors in Neuroscience, Hamilton College 2009 Elihu Root Fellowship, Hamilton College 2009 • Award to support graduate study Academic Fund for Seniors, Hamilton College 2008 • Award to support senior thesis research The Jeffery Science Fund, Hamilton College 2008 • Summer internship stipend Deans Lists, Hamilton College 2005-2009 Bristol Scholar, Hamilton College 2005-2009 • Half-tuition academic scholarship and research stipend UNIVERSITY SERVICE Graduate Student Representative to the Neuroscience Faculty 2012-2013 Neuroscience Graduate Program Admission Committee 2012-2013 Neuroscience Graduate Program Recruitment Weekend Coordinator 2012-2013 The Sheridan Center for Teaching and Learning Advisory Board 2012-2014 SOCIETIES 2013-Present International Society for the Scholarship of Teaching and Learning 2009-Present Society for Neuroscience 2009-Present Phi Beta Kappa, National Academic Honor Society 2009-Present Sigma Xi, National Scientific Research Society 2007-Present Psi Chi, Psychology National Honor Society vii ACKNOWLEDGEMENTS I would like to acknowledge my wonderful advisor and mentor, Diane Lipscombe. I thank her not only for her incomparable PhD training, but her commitment to mentoring all aspects of my graduate career. I value the time she spent personally teaching me how to do electrophysiology and her vibrant presence in the lab. She cultivates an environment in which it is not only safe to ask questions but exploration and risk taking are encouraged and supported. I appreciate her balance of support and guidance while encouraging my development into an independent scientist. Under her tutelage, I have developed into a stronger experimentalist, writer, mentor, and communicator. I am thankful to the past and present members of the Lipscombe lab including Sylvia Denome, Arturo Andrade, Summer Allen, Daniel DuBreuil, Erin Hoops, Cecilia Phillips Toro, Spiro Marangoudakis, Rachel Jiang, and Tom Helton; in addition to being excellent scientists and colleagues, I am thankful to count many of them as close friends who made my time in lab so enjoyable. In particular, I would like to thank Sylvia for patiently answering all of my questions and for sharing her vast knowledge of molecular biology. Tom was the first person I learned electrophysiology from and I have been fortunate to continue a collaboration with his group even after he left the lab. To Spiro- you left behind one of the most detailed experimental protocols I have ever seen and my Western blots benefited enormously. I would also like to thank Kishan Patel and Sophia Lin, two undergraduates who worked on the Western blots included in this dissertation. To my lab ‘big brother and sister’- Arturo and Summer, I owe them more thanks than space permits. They taught and mentored me in almost all of the experimental viii methodologies used in this dissertation and were key players in my graduate school support network. I also thank Dan, who made an excellent statistics guru. To my parents, Don and Laura Webster, I thank them for their unending support and encouragement. I would also like to thank my sister, Kimberly Webster. In addition to being my biggest cheerleader, hers were the first neurons that I ever thought about. Finally, I would like to thank
Recommended publications
  • CURRICULUM VITAE December, 2018 DIANE LIPSCOMBE, Phd
    CURRICULUM VITAE December, 2018 DIANE LIPSCOMBE, PhD Brown University Brown Institute for Brain Science 2 Stimson Avenue Providence, RI 02912 [email protected] EDUCATION 1982 B.Sc. (Hons) 1982: University College London, Department of Pharmacology. 1986 Ph.D. University College London, Department of Pharmacology. Thesis title: “Pharmacology of nicotinic receptors on frog neurones: Electrophysiological studies on intact and dissociated ganglia”. APPOINTMENTS 1978-1982 Technician, the Welcome Research Laboratories, Beckenham, Kent, England. Supervised by Sir James W. Black. Full-time:1978 -1979; summers: 1980-1982. 1982-1986 Graduate Student at University College London, Department of Pharmacology. Supervised by Humphrey P. Rang (FRS) and David Colquhoun (FRS). 1986-1988 Postdoctoral Associate at Yale University School of Medicine, Department of Cellular and Molecular Physiology in the laboratory of Richard W. Tsien. 1989-1990 Postdoctoral Fellow at Stanford Medical School, Department of Molecular and Cellular Physiology in the laboratory of Richard W. Tsien. 1990-1992 Visiting Assistant Professor and consultant, Miles Pharmaceuticals, West Haven, CT. 1990-1993 Assistant Professor of Physiology (Research), Brown University, Division of Biology and Medicine. 1993-1999 Assistant Professor of Neuroscience (Tenure Track), Brown University, Division of Biology and Medicine. 1997 Visiting Assistant Professor in the Centers for Genome Research and for Neuroscience, Edinburgh University, UK. 1999 Associate Professor of Neuroscience (with tenure), Brown University. 2006 Professor of Neuroscience, Brown University. 2014-2015 Co-Director, Center for Neurobiology of Cells and Circuits, Brown Institute for Brain Science. 2015-2016 Interim Director, Brown Institute for Brain Science. 2016 Adjunct Professor of George and Anne Ryan Institute for Neuroscience, University of Rhode Island.
    [Show full text]
  • Cell-Specific Exon Methylation and CTCF Binding in Neurons Regulate Calcium Ion Channel Splicing and Function Eduardo Javier Lo´ Pez Soto, Diane Lipscombe*
    RESEARCH ARTICLE Cell-specific exon methylation and CTCF binding in neurons regulate calcium ion channel splicing and function Eduardo Javier Lo´ pez Soto, Diane Lipscombe* The Robert J and Nancy D Carney Institute for Brain Science & Department of Neuroscience, Brown University, Providence, United States Abstract Cell-specific alternative splicing modulates myriad cell functions and is disrupted in disease. The mechanisms governing alternative splicing are known for relatively few genes and typically focus on RNA splicing factors. In sensory neurons, cell-specific alternative splicing of the Cacna1b presynaptic CaV channel gene modulates opioid sensitivity. How this splicing is regulated is unknown. We find that cell and exon-specific DNA hypomethylation permits CTCF binding, the master regulator of mammalian chromatin structure, which, in turn, controls splicing in a DRG- derived cell line. In vivo, hypomethylation of an alternative exon specifically in nociceptors, likely permits CTCF binding and expression of CaV2.2 channel isoforms with increased opioid sensitivity in mice. Following nerve injury, exon methylation is increased, and splicing is disrupted. Our studies define the molecular mechanisms of cell-specific alternative splicing of a functionally validated exon in normal and disease states – and reveal a potential target for the treatment of chronic pain. Introduction The precise exon composition of expressed genes defines fundamental features of neuronal function (Fiszbein and Kornblihtt, 2017; Lopez Soto et al., 2019; Ule and Blencowe, 2019). It is essential *For correspondence: [email protected] to understand the mechanisms that regulate alternative pre mRNA splicing. This dynamic process regulates exon composition for >95% of multi-exon genes according to cell-type and influenced by Competing interests: The development, cellular activity and disease (Furlanis and Scheiffele, 2018).
    [Show full text]
  • EVALUATING the ROLE of a Cav2.2 SPLICE VARIANT in BEHAVIORAL RESPONSES to STRESS, NOVELTY, and OTHER MONOAMINE-LINKED FUNCTIONS
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Winter 2019 EVALUATING THE ROLE OF A CaV2.2 SPLICE VARIANT IN BEHAVIORAL RESPONSES TO STRESS, NOVELTY, AND OTHER MONOAMINE-LINKED FUNCTIONS Ashton Brennecke University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Brennecke, Ashton, "EVALUATING THE ROLE OF A CaV2.2 SPLICE VARIANT IN BEHAVIORAL RESPONSES TO STRESS, NOVELTY, AND OTHER MONOAMINE-LINKED FUNCTIONS" (2019). Master's Theses and Capstones. 1319. https://scholars.unh.edu/thesis/1319 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. EVALUATING THE ROLE OF A CaV2.2 SPLICE VARIANT IN BEHAVIORAL RESPONSES TO STRESS, NOVELTY, AND OTHER MONOAMINE-LINKED FUNCTIONS BY ASHTON BRENNECKE BS Biology, Asbury University, 2017 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Genetics December, 2019 i This thesis/dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Genetics by: Thesis Director, Arturo Andrade, Assistant Professor of Biological Sciences Xuanmao Chen, Assistant Professor of Molecular, Cellular, and Biomedical Sciences Sergios Charntikov, Assistant Professor of Psychology On November 8th, 2019 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Translocatable Voltage-Gated Ca2+ Channel Β Subunits in Α1–Β
    + Translocatable voltage-gated Ca2 channel β subunits in α1–β complexes reveal competitive replacement yet no spontaneous dissociation Jun-Hee Yeona, Cheon-Gyu Parka, Bertil Hilleb,1, and Byung-Chang Suha,1 aDepartment of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 42988 Daegu, South Korea; and bDepartment of Physiology and Biophysics, University of Washington, Seattle, WA 98195 Contributed by Bertil Hille, August 28, 2018 (sent for review June 8, 2018; reviewed by Diane Lipscombe and Daniel L. Minor Jr.) 2+ K β β subunits of high voltage-gated Ca (CaV) channels promote cell- affinity ( d) of 5 to 20 nM depending on the subunit isoform surface expression of pore-forming α1 subunits and regulate chan- and experimental conditions (15–23). In intact cells, the stability nel gating through binding to the α-interaction domain (AID) in of the channel CaV α1–β complex is not well understood, but that the first intracellular loop. We addressed the stability of CaV α1B–β interaction is said to have lower apparent affinity and to be more interactions by rapamycin-translocatable Ca β subunits that allow dynamic than in vitro. For instance, injection of purified β2a V Xenopus drug-induced sequestration and uncoupling of the β subunit from protein into oocytes expressing CaV2.3 precoupled with Ca 2.2 channel complexes in intact cells. Without Ca α1B/α2δ1, all β1b subunits changed the fast inactivating currents to slowly V V K modified β subunits, except membrane-tethered β2a and β2e, are in inactivating currents over several hours (24). The apparent d –β the cytosol and rapidly translocate upon rapamycin addition to an- for the CaV2.3 1b interaction is reported to rise to several chors on target organelles: plasma membrane, mitochondria, or endo- hundred nanomolar inside cells, allowing dynamic exchange of the β subunit on α1E subunits and competition in the binding of plasmic reticulum.
    [Show full text]
  • Alternative Splicing Controls G Protein Inhibition of Cav2.2 Calcium
    Alternative Splicing Controls G Protein Inhibition of CaV2.2 Calcium Channels Cecilia Goldsmith Phillips BA, Reed College, 2003 THESIS Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Department of Neuroscience at Brown University Providence, Rhode Island May 2012 © 2012 Cecilia Goldsmith Phillips This dissertation by Cecilia Goldsmith Phillips is accepted in its present form by the Department of Neuroscience as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Dr. Diane Lipscombe, Advisor Recommended to the Graduate Council Date Dr. Gilad Barnea, Reader Date Dr. Julie Kauer, Reader Date Dr. Stephen Ikeda, Outside Reader Approved by the Graduate Council Date Dr. Peter M. Weber, Dean of the Graduate School iii CURRICULUM VITAE 23 Elton St, Providence, RI 02906 (503) 705-7387 [email protected] EDUCATION Brown University, Providence, RI PhD, Neuroscience, May 2012 Reed College, Portland, OR BA, Biology, May 2003 Senior Thesis: Processing of GFP-tagged ELH Prohormone in PC12 Cells Advisor: Dr. Stephen Arch RESEARCH POSITIONS Research Assistant to Dr. Stephen M Smith, Division of Molecular Medicine, Oregon Health Sciences University, Portland, OR. September 2003 – August 2005 Internship with Dr. Peter Gillespie, Vollum Institute, Oregon Health Sciences University, Portland, OR. June 2003 – August 2003 Research Assistant to Dr. Maryanne McClellan, Department of Biology, Reed College, Portland, OR. June 2002 – August 2002 Research Assistant to Dr. David McKinnon, Department of Neuroscience, SUNY Stony Brook. June 2001 – August 2001 and June 2000 – August 2000 PUBLICATIONS Allen SE*, Phillips CG*, Raingo J, and D Lipscombe. The neuronal splicing factor Fox- 2 controls Gs protein inhibition of CaV2.2 calcium channels.
    [Show full text]
  • Cell Calcium the 2 Subunit Augments Functional Expression and Modifies
    Cell Calcium 46 (2009) 282–292 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca The ␣2␦ subunit augments functional expression and modifies the pharmacology of CaV1.3 L-type channels Arturo Andrade a,1, Alejandro Sandoval b,c, Ricardo González-Ramírez b, Diane Lipscombe d, Kevin P. Campbell e, Ricardo Felix b,∗ a Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav-IPN, Mexico City, Mexico b Department of Cell Biology, Cinvestav-IPN, Mexico City, Mexico c School of Medicine FES Iztacala, National Autonomous University of Mexico, Tlalnepantla, Mexico d Department of Neuroscience, Brown University, Providence, RI, USA e Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, USA article info abstract 2+ Article history: The auxiliary CaV␣2␦-1 subunit is an important component of voltage-gated Ca (CaV) channel complexes Received 12 May 2009 in many tissues and of great interest as a drug target. Nevertheless, its exact role in specific cell functions Received in revised form 27 August 2009 is still unknown. This is particularly important in the case of the neuronal L-type CaV channels where Accepted 28 August 2009 these proteins play a key role in the secretion of neurotransmitters and hormones, gene expression, and Available online 30 September 2009 the activation of other ion channels. Therefore, using a combined approach of patch-clamp recordings and molecular biology, we studied the role of the CaV␣2␦-1 subunit on the functional expression and Keywords: the pharmacology of recombinant L-type Ca 1.3 channels in HEK-293 cells.
    [Show full text]
  • CACNA1B Mutation Is Linked to Unique Myoclonus Dystonia Syndrome
    UvA-DARE (Digital Academic Repository) Genetic architecture of dystonia Groen, J.L. Publication date 2014 Link to publication Citation for published version (APA): Groen, J. L. (2014). Genetic architecture of dystonia. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 2.1.B CACNA1B MUTATION IS LINKED TO UNIQUE MYOCLONUS DYSTONIA SYNDROME Justus L Groen*, Arturo Andrade*, Katja Ritz, Hamid Jalalzadeh, Martin Haagmans, Ted Bradley, Peter Nürnberg, Dineke Verbeek, Sylvia Denome, Raoul C.M. Hennekam, Diane Lipscombe, Frank Baas** & Marina A.J. Tijssen** * shared first;** shared last Submitted Groen.indd 57 11-2-2014 13:38:15 58 Chapter two ABSTRACT Exome sequencing combined with linkage analysis in a 3-generation pedigree with an unique familial Myoclonus-Dystonia syndrome (M-D) identified a mutation in the CACNA1B gene coding for the neuronal voltage-gated calcium channel CaV2.2.
    [Show full text]
  • Differential Ubiquitination and Proteasome Regulation of Cav 2.2 N-Type Channel Splice Isoforms
    The Journal of Neuroscience, July 25, 2012 • 32(30):10365–10369 • 10365 Cellular/Molecular Differential Ubiquitination and Proteasome Regulation of CaV2.2 N-Type Channel Splice Isoforms Spiro Marangoudakis, Arturo Andrade, Thomas D. Helton, Sylvia Denome, Andrew J. Castiglioni, and Diane Lipscombe Department of Neuroscience, Brown University, Providence, Rhode Island 02912 CaV2.2 (N-type) calcium channels control the entry of calcium into neurons to regulate essential functions but most notably presynaptic transmitter release. CaV2.2 channel expression levels are precisely controlled, but we know little of the cellular mechanisms involved. The ubiquitin proteasome system (UPS) is known to regulate expression of many synaptic proteins, including presynaptic elements, to optimize synaptic efficiency. However, we have limited information about ubiquitination of CaV2 channels. Here we show that CaV2.2 proteins are ubiquitinated, and that elements in the proximal C terminus of CaV2.2 encoded by exon 37b of the mouse Cacna1b gene predispose cloned and native channels to downregulation by the UPS. CaV2.2 channels containing e37b are expressed throughout the mammalian nervous system, but in some cells, notably nociceptors, sometimes e37a—not e37b—is selected during alternative splicing of CaV2.2 pre-mRNA. By a combination of biochemical and functional analyses we show e37b promotes a form of ubiquitination that is coupled to reduced CaV2.2 current density and increased sensitivity to the UPS. Cell-specific alternative splicing of e37a in nociceptors reduces CaV2.2 channel ubiquitination and sensitivity to the UPS, suggesting a role in pain processing. Introduction dependent changes in synaptic efficacy involve presynaptic com- ponents (Speese et al., 2003; Bingol and Schuman, 2005; Rinetti Presynaptic CaV2 channels mediate calcium entry to trigger neu- rotransmitter release and support synaptic transmission (Catter- and Schweizer, 2010), CaV2 channels were only recently recog- all, 2000).
    [Show full text]
  • Advances in Voltage-Gated Calcium Channel Structure, Function and Physiology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1828 (2013) 1521 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Editorial Advances in voltage-gated calcium channel structure, function and physiology It is well established that calcium ions are important signalling molecular mechanisms of channel modulation. Dr. Henry Colecraft molecules that mediate a wide range of physiological functions, takes a broader view of high voltage activated calcium channel modula- including muscle contraction, enzyme activation, and secretion. Excitable tion by RGK proteins, a family of small G proteins that mediate a complex cells contain numerous pathways by which intracellular calcium concen- regulation of calcium channel activity. Finally, Dr. Daniela Pietrobon tration can be elevated. Voltage-gated calcium channels are the primary completes the issue by highlighting the role of Cav2.1 (P/Q-type) calcium mechanism of depolarization evoked calcium entry into heart, muscle channels in familial forms of migraine. In patients with this disorder and brain cells. The mammalian genome expresses multiple calcium naturally occurring mutations in the P/Q-type gene give rise to migraine channel subtypes that fulfill specific cellular functions. These calcium phenotypes with varying degrees of severity. channels can either be monomers (as is the case with low voltage- acti- Clearly, this collection of reviews is only a snapshot of the many vated T-type calcium channels), or multimeric protein complexes that exciting findings in the calcium channel field. However, it provides a are formed through the assembly of multiple calcium channels subunits topical overview of pertinent topics in this area by some of the world's (as for the high voltage-activated calcium channels).
    [Show full text]
  • A Dissertation Entitled Regulation of Neuronal L-Type Voltage-Gated
    A Dissertation entitled Regulation of Neuronal L-type Voltage-Gated Calcium Channels by Flurazepam and Other Positive Allosteric GABAA Receptor Modulators by Damien E. Earl Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ________________________________________ Dr. Elizabeth I. Tietz, Committee Chair ________________________________________ Dr. Zi-Jian Xie, Committee Member ________________________________________ Dr. David R. Giovannucci, Committee Member ________________________________________ Dr. Scott C. Molitor, Committee Member ________________________________________ Dr. Bryan K. Yamamoto, Committee Member ________________________________________ Dr. Patricia Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Damien E. Earl This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Regulation of Neuronal L-type Voltage-Gated Calcium Channels by Flurazepam and Other Positive Allosteric GABAAR Modulators by Damien E. Earl Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2011 Benzodiazpines (BZs) are clinically useful anxiolytics, sedatives, and anticonvulsants. Their mechanism of action is positive allosteric modulation of γ-aminobutyric acid type A (GABAA) receptors, the main
    [Show full text]
  • Directvote Election: Candidate Bios
    DirectVote Election: Candidate Bios President-Elect Your Voting Status: Select 0 to 1 from below. Selected: 0 Vote For: Diane Lipscombe Diane Lipscombe Administrative Accomplishments: Throughout my career, I have had numerous opportunities, with increasing complexity and scope, to combine my strong commitment to neuroscience research with my administrative leadership skills in the service of my department and at the level of the university, as well as through professional societies and non-profit organizations. I gain tremendous personal gratification from organizational problem-solving efforts that require creating new programs and improving existing ones, toward enhancing research and training in neuroscience and its communication to scientific and lay audience. I have learned the importance of community-wide engagement, effective communication, and building consensus around major issues. A key ingredient to reaching fair decisions and establishing enduring programs is seeking broad input at all levels, including from students and postdoctoral trainees, and engaging a diversity of opinions to reflect the broad community of researchers. At Brown, I have served in a number of roles that require combined administrative and scientific skills. I directed the graduate program in neuroscience for six years and since 2006, I have been the Principal Investigator on Institutional Training Grants that have supported graduate education and diversity in the Neuroscience Graduate Program at Brown. Under my leadership, the program began its successful relationship with the NIH Graduate Partnership Program. Currently, I am the Director of the Brown Institute for Brain Science, a multidisciplinary institute that engages more than 100 research laboratories in over 10 departments in both the basic and clinical sciences.
    [Show full text]
  • Differential Role of N-Type Calcium Channel Splice Isoforms in Pain
    The Journal of Neuroscience, June 13, 2007 • 27(24):6363–6373 • 6363 Neurobiology of Disease Differential Role of N-Type Calcium Channel Splice Isoforms in Pain Christophe Altier,1 Camila S. Dale,2 Alexandra E. Kisilevsky,1 Kevin Chapman,2 Andrew J. Castiglioni,3 Elizabeth A. Matthews,4 Rhian M. Evans,1 Anthony H. Dickenson,4 Diane Lipscombe,3 Nathalie Vergnolle,2 and Gerald W. Zamponi1,2 1Hotchkiss Brain Institute, Department of Physiology and Biophysics and 2Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada T2N 1N4, 3Department of Neuroscience, Brown University, Providence, Rhode Island 02912, and 4Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom N-type calcium channels are essential mediators of spinal nociceptive transmission. The core subunit of the N-type channel is encoded by a single gene, and multiple N-type channel isoforms can be generated by alternate splicing. In particular, cell-specific inclusion of an alternatively spliced exon 37a generates a novel form of the N-type channel that is highly enriched in nociceptive neurons and, as we show here, downregulated in a neuropathic pain model. Splice isoform-specific small interfering RNA silencing in vivo reveals that channels containing exon 37a are specifically required for mediating basal thermal nociception and for developing thermal and mechanical hyperalgesia during inflammatory and neuropathic pain. In contrast, both N-type channel isoforms (e37a- and e37b-containing) con- tribute to tactile neuropathic allodynia. Hence, exon 37a acts as a molecular switch that tailors the channels toward specific roles in pain. Key words: pain; calcium channels; N-type; splice isoforms; siRNA; dorsal root ganglion Introduction responses in models of neuropathic and inflammatory pain Detection and transmission of nociceptive stimuli in dorsal root (Hatakeyama et al., 2001; Kim et al., 2001; Saegusa et al., 2001).
    [Show full text]