Alternative Splicing Controls G Protein Inhibition of CaV2.2 Calcium Channels Cecilia Goldsmith Phillips BA, Reed College, 2003 THESIS Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in the Department of Neuroscience at Brown University Providence, Rhode Island May 2012 © 2012 Cecilia Goldsmith Phillips This dissertation by Cecilia Goldsmith Phillips is accepted in its present form by the Department of Neuroscience as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Date Dr. Diane Lipscombe, Advisor Recommended to the Graduate Council Date Dr. Gilad Barnea, Reader Date Dr. Julie Kauer, Reader Date Dr. Stephen Ikeda, Outside Reader Approved by the Graduate Council Date Dr. Peter M. Weber, Dean of the Graduate School iii CURRICULUM VITAE 23 Elton St, Providence, RI 02906 (503) 705-7387
[email protected] EDUCATION Brown University, Providence, RI PhD, Neuroscience, May 2012 Reed College, Portland, OR BA, Biology, May 2003 Senior Thesis: Processing of GFP-tagged ELH Prohormone in PC12 Cells Advisor: Dr. Stephen Arch RESEARCH POSITIONS Research Assistant to Dr. Stephen M Smith, Division of Molecular Medicine, Oregon Health Sciences University, Portland, OR. September 2003 – August 2005 Internship with Dr. Peter Gillespie, Vollum Institute, Oregon Health Sciences University, Portland, OR. June 2003 – August 2003 Research Assistant to Dr. Maryanne McClellan, Department of Biology, Reed College, Portland, OR. June 2002 – August 2002 Research Assistant to Dr. David McKinnon, Department of Neuroscience, SUNY Stony Brook. June 2001 – August 2001 and June 2000 – August 2000 PUBLICATIONS Allen SE*, Phillips CG*, Raingo J, and D Lipscombe. The neuronal splicing factor Fox- 2 controls Gs protein inhibition of CaV2.2 calcium channels.