Analyzing Human Error in Aircraft Ground Damage Incidents Caren A

Total Page:16

File Type:pdf, Size:1020Kb

Analyzing Human Error in Aircraft Ground Damage Incidents Caren A International Journal of Industrial Ergonomics 26 (2000) 177}199 Analyzing human error in aircraft ground damage incidents Caren A. Wenner, Colin G. Drury* State University of New York at Buwalo, Department of Industrial Engineering, 342 Bell Hall, PO Box 606050, Buwalo, NY 14260, USA Received 10 June 1997; accepted 18 February 1998 Abstract Ground damage incidents (incidents in which airline personnel cause damage to an aircraft on the ground) occur as airline personnel are working on, or around, an aircraft on the ground, either on the ramp or at a maintenance facility. Each incident can be quite costly to the airline, with costs both tangible (repair costs and lost revenue) and intangible (passenger inconvenience, increased maintenance workload). Thus, airlines have a "nancial incentive to reduce the number of ground damage incidents that occur. One of the airline's most di$cult tasks has been to utilize the information collected in their existing error reporting systems to determine the common latent failures which contribute to typical ground damage incidents. In this study, 130 ground damage incidents from a major airline were reviewed to determine the active and latent failures. Twelve distinct hazard patterns (representing the active failures) were identi"ed, with three hazard patterns accounting for 81% of all ground damage incidents. Nine major latent failures were identi"ed, and the relationships between the hazard patterns and latent failures were examined in depth. This type of analysis allows the latent failures common to di!erent hazard patterns to be identi"ed, and provides a means for developing focused intervention strategies to prevent future ground damage. Relevance to industry Airlines have generally had a di$cult time analyzing reports of human error to make improvements in their maintenance systems. This study provides a methodology that allows reports of human error to be analyzed, and interventions developed based on the results of the analysis. The methodology would also be applicable to, and useful in, other industries. ( 2000 Elsevier Science B.V. All rights reserved. Keywords: Aircraft ground damage; Human error analysis 1. Introduction besides #ight operations, that have a serious impact on aviation safety. Errors in maintenance opera- Since the Aloha Airlines accident in 1988, tions, especially, have the potential to result in in which the failure of airline inspectors to de- serious safety problems, and/or cause an accident. tect cracks in the fuselage resulted in the aircraft However, most e!ort (by airline personnel, industry splitting apart in #ight, the aviation community consultants, and human factors researchers) on re- has recognized that there are other departments, ducing errors was concentrated on improvements to the #ight deck, and on pilot training. McDonald and Fuller (1996a) point out that human factors * Corresponding author. Fax: #1-716-645-3302. e!orts on the #ight deck has been a recognized E-mail address: drury@bu!alo.edu (C.G. Drury). research "eld for 25 yr, while e!orts on aviation 0169-8141/00/$ - see front matter ( 2000 Elsevier Science B.V. All rights reserved. PII: S 0 1 6 9 - 8 1 4 1 ( 9 9 ) 0 0 0 6 5 - 7 178 C.A. Wenner, C.G. Drury / International Journal of Industrial Ergonomics 26 (2000) 177}199 maintenance have only just begun. Recognizing One example, documented in Airline Equipment this shortcoming, the FAA'sO$ce of Aviation Maintenance (Chandler, 1995), describes a typical Medicine established a program in 1988 to fund American Airlines ground damage incident in a broad range of human factors research in the which the cost of repairing a damaged aircraft was airline maintenance domain. $39,300. However, the total cost of the incident was Many projects within this program have focused calculated to be $367,500 due to passenger and on human errors in the maintenance environment, cargo revenue lost. In addition, there are non- and on how to prevent similar errors from reoccur- tangible costs to the airline including: passenger ring. It is widely recognized that although a large inconvenience, a!ected #ight schedules throughout number of errors may occur on a regular basis, it is the entire airline system, and increased mainten- very rare that a situation is elevated into a serious ance workload. A typical airline may have 100}200 incident a!ecting #ight safety. In most situations, reportable GDIs each year, resulting in signi"cant an error is either caught immediately or the de- "nancial losses that could be prevented. fenses of the maintenance system act to prevent the Thus, it is obvious that airlines have a signi"cant error from becoming an incident. Thus, the error is "nancial incentive to reduce the number of GDIs prevented from propagating through the system. that occur. However, due to the di$culty that often Mechanics are especially conscious of the impor- accompanies the calculation of the total cost of tance and seriousness of their work, and typically each GDI, airlines have not been able to quantify expend considerable e!ort to prevent, or at least the magnitude of the losses with any accuracy. recognize and correct, errors that could lead In addition, airlines have had a di$cult time con- to safety concerns for personnel, passengers, and trolling these costs, since they have been equipment. unable to pinpoint the causes of recurrent incidents Fortunately, airlines report few maintenance- (McDonald and Fuller, 1996b). induced incidents that a!ect the safety of personnel and passengers. However, ground damage, or dam- 1.2. Error reporting systems age to an aircraft caused by airline personnel while the aircraft is on the ground, remains a serious Problems in identifying causes of recurrent inci- problem for most airlines, with costs in the tens of dents are at least partially the result of inadequate millions of dollars per year. Ground damage can methods of collecting information about errors. In occur while ramp personnel are servicing an air- a typical airline, errors (above a certain threshold of craft, and/or while maintenance personnel are per- severity) are strictly monitored and recorded. For forming maintenance work. In fact, ground damage example, airline management may maintain strin- incidents (GDIs) can occur at any time personnel gent records of on-time #ight departures/arrivals, are working on, or around, an aircraft that is on the turnaround time for aircraft requiring mainten- ground. This category of incident only includes ance, injuries to personnel, damage to aircraft and damage that is inherently preventable by airline other ground equipment, and other measures that personnel on the ground: damage caused by hail, document the airline's overall performance. In ad- bird strikes, part failures, or even by foreign object dition, many errors (below the threshold of severity damage is not considered to be ground damage, for reporting) may be detected and corrected and some of these categories even have their own routinely as part of the system with no records separate prevention programs. kept. Most of the error-reporting systems in use at 1.1. Why is ground damage important to airlines? a typical airline are maintained and utilized by di!erent departments, and are rarely used together Ground damage incidents are extremely costly to to analyze the system as a whole. But, there are an airline; the total cost of an incident includes the many inherent problems that may a!ect more than cost of repairing the damage, as well as the less one of these performance measures, and similar tangible costs of keeping an aircraft out of service. errors may lead to an incident to be recorded in C.A. Wenner, C.G. Drury / International Journal of Industrial Ergonomics 26 (2000) 177}199 179 di!erent error reporting systems. For example, if the factors leading up to the incident, or the other a mechanic drops a wrench on his foot, the incident system factors that may have contributed to the would be recorded as an OJI (on-the-job injury). If incident. However, these type of reporting systems a mechanic drops a wrench on an aircraft, damag- do provide for quantitative tracking of error data, ing it severely, the incident would be recorded as including such information as the number of inci- Technical Operations Ground Damage. If the dents per month at each station, number of inci- wrench were dropped on the aircraft, causing no dents occurring on each type of aircraft, etc. They damage, the incident would not be recorded at all! also allow the particular individuals responsible for Finally, if a ground operations employee drops the incident to be identi"ed, and for blame to be a wrench on an aircraft, the incident would be assigned. Generally, these reporting systems are recorded as Ground Operations Ground Damage. useful to monitor trends in performance, but In each of these scenarios, the error was exactly the little use is made of this information to redesign the same, only the "nal consequences di!ered, in turn systems that generated the errors in the "rst place. a!ecting the way in which each of these incidents is In recent years, other error reporting systems recorded. Without compiling information from all with explicit human factors components have been of these error-reporting systems, it is quite di$cult introduced which provide investigators with tools to get a full picture of the types, and frequencies, of to help identify latent failures that may have con- recurrent errors. tributed to an error. Boeing's Maintenance Error The current project, as is typical of FAA O$ce Decision Aid (MEDA) system, and Aurora Safety of Aviation Medicine projects, was a joint e!ort and Information Systems Inc.'s Aurora Mishap between researchers and a partner airline. In Management System are examples of current error our partner airline, ground damage incidents are reporting systems which are being used by airlines recorded in narrative reports.
Recommended publications
  • Modeling with Robotran the Autonomous Electrical Taxi and Pushback Operations of an Airbus A320
    Modeling with Robotran the autonomous electrical taxi and pushback operations of an Airbus A320 Dissertation presented by Stéphane QUINET for obtaining the Master’s degree in Electro-mechanical Engineering Option(s): Mechatronics Supervisor(s) Paul FISETTE , Bruno DEHEZ Reader(s) Francis LABRIQUE, Matthieu DUPONCHEEL Academic year 2016-2017 Acknowledgements Before getting to the heart of this master thesis, I wish to take the time to thank the many people that supported me in this project of going back studying at 26 years old and making it possible to combine both my passion for flying and for acquiring new technical knowledge. I would like to thank my master thesis supervisors, Pr. Paul Fisette and Pr. Bruno Dehez for their support and for the approval to work on this proposed subject. It was a chance to be sup- ported by people with such an open-mindedness and eagerness to discover new technical fields. Their understanding of my challenging situation and their flexibility was greatly appreciated. I would especially like to thank Nicolas Docquier for the many hours spent at correcting the Robotran-Simulink interface Windows version, my algorithms and for the countless advises that he provided all along the year. Thanks to the assisting staff of the department, Aubain Verlé, Olivier Lantsoght, Quentin Docquier for their technical inputs and support. Finally, thank you very much to UCL university staff for their understanding and their support during those 5 years. After those 5 challenging years combining University and my airline pilot job, it is time to thank the most important person who makes all of this possible, my companion, Carole Aerts.
    [Show full text]
  • Presentation: Electrification of Airport Ground Support Equipment
    Heavy-Duty Vehicle Electrification and its Impacts Tuesday, March 27, 2018 2018 Advanced Energy Conference New York City, NY Baskar Vairamohan Senior Technical Leader © 2018 Electric Power Research Institute, Inc. All rights reserved. About the Electric Power Research Institute Independent Objective, scientifically based results address reliability, efficiency, affordability, health, safety, and the environment Nonprofit Chartered to serve the public benefit Collaborative Bring together scientists, engineers, academic researchers, and industry experts 2 © 2018 Electric Power Research Institute, Inc. All rights reserved. Airport Ground Support Equipment (GSE) Drivers for Electrification: .Air quality improvements – Benefits of emissions produced using electricity as a fuel versus diesel fuel or gasoline .Economic benefits – Reduced fuel costs – Reduced maintenance costs 3 © 2018 Electric Power Research Institute, Inc. All rights reserved. Electric GSE equipment options Common GSE, all available in electric options .Bag Tugs/Bag Tractor .Belt loaders .Pushback Tractor/Aircraft Tractor 4 © 2018 Electric Power Research Institute, Inc. All rights reserved. Electric GSE equipment options Not typical but all available in electric options .Container/cargo loaders .Passenger Stairs .Lavatory Truck .Catering Truck .…golf carts 5 © 2018 Electric Power Research Institute, Inc. All rights reserved. Other electric options . Auxiliary Power PC Air (PCA) Unit – Pre-conditioned Air Units are used to cool the aircraft while it is parked at the gate – Southwest Airlines project objective in 2002: Provide external pre- conditioned air (heat and cool) and 400 HZ power to the Aircraft to minimize the use of the Aircraft’s Auxiliary Power Units (APU) while the Aircraft is at the gate. Saving fuel and reducing emissions. 6 © 2018 Electric Power Research Institute, Inc.
    [Show full text]
  • Boeing 747-400 Standard Procedure's Guide an Illustrated Guide to Getting Started with the PMDG 747 Contents
    Boeing 747-400 Standard Procedure's Guide An illustrated guide to getting started with the PMDG 747 Contents Getting Started Preflight Pushback and Start Taxi and Takeoff Climb and Cruise Approach and Landing Taxi In, Parking, and Shutdown Getting Started This guide will: This document is © 2005 - Jared "Smitty" Smith. You are free to translate this article as long as a link is guide you through the standard startup, provided to this document. If you contact me, I will taxi, takeoff, climb, cruise, approach, and provide a link to your translation. landing procedures for the PMDG 747. provide an illustrated guide to the major You can also redistribute this as long as you link to the systems and controls of the 747. original (which will always be kept up-to-date) found at provide an simple, logical, and easy to http://smithplanet.com/fs2004/pmdg/index.htm understand method for operating the 747 similarly to real-world operations. A PDF version is available by clicking the icon below. This guide will NOT: be a substitute for the official PMDG manual. teach you all operations of the aircraft. teach you how to program and use the FMC beyond what is needed to minimally operate the aircraft. teach you about or how to fully use the autopilot functions. You will notice that this guide deviates from the published Normal Procedures checklist. This is done to facilitate learning the 747 systems, to save time, and to only focus on the systems that are likely to be necessary to establish an operational aircraft. I believe all of the procedures and information here to be factual, though it is often overly simplified and not necessarily in the correct order.
    [Show full text]
  • Ground Operations Occurrences at Australian Airports 1998 to 2008
    Publication Date: June 2010 ISBN 978-1-74251-061-3 The Australian Transport Safety ATSB TRANSPORT SAFETY REPORT Bureau (ATSB) is an independent Aviation Research & Analysis AR-2009-042 Commonwealth Government statutory Agency. The Bureau is governed by a Final Commission and is entirely separate from transport regulators, policy makers and service providers. The ATSB's function is to improve safety Ground operations occurrences at and public confidence in the aviation, marine and rail modes of transport through excellence in: Australian airports independent investigation of transport accidents and other safety occurrences; 1998 to 2008 safety data recording, analysis and research; and fostering safety awareness, knowledge and action. The ATSB does not investigate for the purpose of apportioning blame or to Abstract provide a means for determining liability. The aviation industry has been slow to acknowledge the risks associated with ground operations. The ATSB performs its functions in accordance with the provisions of the While most occurrences on airport aprons and taxiways do not have consequences in terms of loss of Transport Safety Investigation Act 2003 and, where applicable, relevant life, they are often associated with aircraft damage, delays to passengers and avoidable financial costs international agreements. to industry. The focus of this report is to examine ground occurrences involving high capacity aircraft When the ATSB issues a safety operations. recommendation, the person, organisation or agency must provide a written response within 90 days. That This report examines occurrences involving ground operations and foreign object debris that occur at response must indicate whether the Australian airports which receive high capacity aircraft.
    [Show full text]
  • KEMPEGOWDA INTERNATIONAL AIRPORT BENGALURU Arrival Flight Delays - 0301Hrs-0900Hrs –Apr’19
    KEMPEGOWDA INTERNATIONAL AIRPORT ON TIME PERFORMANCE REPORT Apr ’ 2019 KEMPEGOWDA INTERNATIONAL AIRPORT BENGALURU Departure & Arrival On-time Monitor – 13 Months Trend 84 86 87 85 87 87 85 86 83 83 80 81 84 79 84 77 79 75 76 76 73 70 71 67 60 56 Apr'18 May'18 Jun'18 Jul'18 Aug'18 Sep'18 Oct'18 Nov'18 Dec'18 Jan'19 feb'19 Mar'19 Apr'19 Overall Arrival OTP Overall Departure OTP Departure OTP trend for the last 6 months (Airline wise) Arrival OTP trend for the last 6 months (Airline wise) 95 91 73 80 94 93 93 93 87 87 76 95 95 76 87 86 78 87 92 95 88 97 71 100 87 89 77 85 86 84 88 90 79 83 78 88 70 80 92 71 79 80 76 75 78 69 70 65 71 78 67 59 71 66 62 58 38 68 55 59 50 53 48 48 96 46 50 81 81 83 79 90 67 68 73 73 71 74 68 73 70 60 68 61 93 90 71 85 79 84 74 73 77 59 83 66 78 73 63 77 77 77 AI 9W SG G8 6E I5 OG 2T UK AI 9W SG G8 6E I5 OG 2T UK 18-Nov 18-Dec 19-Jan 19-Feb 19-Mar 19-Apr 18-Oct 18-Nov 18-Dec 19-Jan 19-Mar 19-Apr KEMPEGOWDA INTERNATIONAL AIRPORT BENGALURU Departure Flight Delays- 0301hrs-0900hrs – Apr’19 NUMBER OF FLIGHTS DELAYED DUE TO AIRLINES AIRPORT WEATHER ATC Add.Delay Code FLIGHTS ON FLIGHTS DELAYED TOTAL AIRLINES TIME (STD + (STD + MORE % ON TIME % DELAYED DEPARTURES 15 min) THAN 15 Min) GROUND DEPARTURE Technical Equip - TECHNICAL, RESTRICTION AIRPORT HANDLING PASSENGER & CONTROL - GPU/ pushback AUTOMATED OPERATIONS, REACTIONARY AT AIRPORT DESTINATION AIRPORT DEPARTURE AERODROME MISCELLANEOUS (IATA BAGGAGE FACILITIES IMPAIRED BY ATFM (IATA Failure of vehicle, lack of or EQUIPMENT CREW (IATA REASONS (IATA DESTINATION SECURITY
    [Show full text]
  • Push-Back Incident
    FINAL REPORT AIRBUS A380-800, REGISTRATION 9V-SKA PUSHBACK INCIDENT IN SINGAPORE CHANGI AIRPORT 10 JANUARY 2008 AIB/AAI/CAS.046 Air Accident Investigation Bureau of Singapore Ministry of Transport Singapore 11 March 2009 The Air Accident Investigation Bureau of Singapore The Air Accident Investigation Bureau (AAIB) is the air accidents and incidents investigation authority in Singapore responsible to the Ministry of Transport. Its mission is to promote aviation safety through the conduct of independent and objective investigations into air accidents and incidents. The AAIB conducts the investigations in accordance with the Singapore Air Navigation (Investigation of Accidents and Incidents) Order 2003 and Annex 13 to the Convention on International Civil Aviation, which governs how member States of the International Civil Aviation Organisation (ICAO) conduct aircraft accident investigations internationally. The investigation process involves the gathering, recording and analysing of all available information on the accidents and incidents; determination of the causes and/or contributing factors; identification of safety issues; issuance of safety recommendations to address these safety issues; and completion of the investigation report. In carrying out the investigations, the AAIB will adhere to ICAO’s stated objective, which is as follows: “The sole objective of the investigation of an accident or incident shall be the prevention of accidents and incidents. It is not the purpose of this activity to apportion blame or liability.” 1 2 CONTENTS
    [Show full text]
  • Download This Issue (PDF)
    03 Jeppesen Expands Products and Markets 05 Preparing Ramp Operations for the 787-8 15 Fuel Filter Contamination 21 Preventing Engine Ingestion Injuries QTR_03 08 A QUARTERLY PUBLICATION BOEING.COM/COMMERCIAL/ AEROMAGAZINE Cover photo: Next-Generation 737 wing spar. contents 03 Jeppesen Expands Products and Markets Boeing subsidiary Jeppesen is transforming its support to customers with a broad array of technology-driven solutions that go beyond the paper navigational charts for which Jeppesen 03 is so well known. 05 Preparing Ramp Operations for the 787-8 Airlines can ensure a smooth transition to the Boeing 787 Dreamliner by understanding what it has in common with existing airplanes in their fleets, as well as what is unique. 15 Fuel Filter Contamination 05 Dirty fuel is the main cause of engine fuel filter contamination. Although it’s a difficult problem to isolate, airlines can take steps to deal with it. 21 Preventing Engine Ingestion Injuries 15 Observing proper safety precautions, such as good communication and awareness of the hazard areas in the vicinity of an operating jet engine, can prevent serious injury or death. 21 01 WWW.BOEING.COM/COMMERCIAL/AEROMAGAZINE Issue 31_Quarter 03 | 2008 Publisher Design Cover photography Shannon Frew Methodologie Jeff Corwin Editorial director Writer Printer Jill Langer Jeff Fraga ColorGraphics Editor-in-chief Distribution manager Web site design Jim Lombardo Nanci Moultrie Methodologie Editorial Board Gary Bartz, Frank Billand, Richard Breuhaus, Darrell Hokuf, Al John, Doug Lane, Jill Langer,
    [Show full text]
  • Time Tested. Field Proven
    PRODUCT CATALOG TIME TESTED. FIELD PROVEN. TextronGSE.com TABLE OF CONTENTS REFERENCE CHARTS 02 PUSHBACKS 06 Conventional Towbarless TRACTORS 13 BELT LOADERS 17 AIRCRAFT SUPPORT EQUIPMENT 18 Ground Power Unit (GPU) Air Start Air Conditioner DEICERS 22 Hot Shot Double Operator Single Operator Washer and Maintenance TOOLING 29 Mu Meter Towbars CUSTOMER EXPERIENCE 30 RENTALS AND REFURBS 32 REFERENCE CHARTS TBL-180 TBL-200 TBL-280 TBL-400 TBL-600 A380 A350 A340-500 / 600 A340-200 / 300 A330 Airbus A300 A310 A321 A320 A319 A318 B747 B787 B777 B767 Boeing B757 B727 B737 B717 DC10 / MD11 MD90 McDonnell Douglas MD80 DC9 ERJ 190 / 195 Embraer ERJ 170 / 175 F70 / F100 Fokker F50 Embraer 135 / 145 Dornier 328 Canadair CRJ Series Saab 340 / 2000 Dehavilland Dash 8 Arvo RJ Series BAe 146 ATR 42 / 72 No technical objection existing, No technical objection With limitations 1 No technical objection existing, tractor approved by aircraft planned for the future but possible only with special outfit manufacturer 02 Product Catalog REFERENCE Air Cargo and Belt Pushbacks Ground Power Units Air Starts Condi- Aircraft Tractors Ldrs tioner 40,000-48,000 DBP 72,000-78,000 DBP 16,000-28,000 DBP 5,000-6,000 DBP GP28M 28.5 VDC 660 and Electric TMB-400 ppm TMB-250 ppm TMB-270 ppm GPU 400/ 100 GPU 400/ 140 GPU 400/ 180 GPU 400/ 120 TMB-180 ppm TMB-150 ppm GPU 400/ 90 GPU 400/ 60 60,000 DBP 10,000 DBP 12,000 DBP 8,000 DBP MA / M1A AC-25D AC-100 GT50H GT110 MR10 MR12 GT50 GT35 MR8 2x 4x 4x 4x 4x 380 340 2x 2x 2x 2x 350 330 2x 2x 2x 2x CF-6 Airbus 318 320 319 321 310
    [Show full text]
  • New Manchester Airport Pushback Procedures – Revision Zulu
    JUNE 2019 AIRPORT SAFETY FOCUS NEW MANCHESTER AIRPORT PUSHBACK PROCEDURES – REVISION ZULU As of the 10th July 2019 at 00:01hrs local, the new Zulu Pushback Procedures need to be adhered to by the airside community. The key changes that have been made are the amendments for stands 101, 103, 105, 107, 109, 111 and 113 as well as changes to push and park locations. In addition to this, the B787-10 has been added to the Engine Test Bay Stop Positions list and 2 new tug call signs have been added. Following on from discussions held at the Pushback Safety committee with both MAG and the ground handling community representatives present, it was decided that it would be a good idea to have defined gaps between the pushback procedures for each stand added. This should provide better clarity and reduce errors in performing the wrong pushback. It is vital that the latest version of the Pushback Procedures document and a copy of the Manchester Airport Manoeuvring Area Map are always in aircraft tugs and try to ensure that you are familiar to them and refer to them before a pushback begins. If you are unsure about an instruction given by ATC or you think an instruction needs to be challenged, give them a call to discuss your concerns. AIRFIELD WORKS IN PROGRESS VIEWER Don’t be afraid to query. Always ask and never assume – you either The Airfield Planning team are the airfield operational while undergoing know or you don’t. responsible for co-ordinating all of the major reconstruction and minor work that occurs out on and around the maintenance work.
    [Show full text]
  • A Preliminary Investigation of Maintenance Contributions to Commercial Air Transport Accidents
    aerospace Article A Preliminary Investigation of Maintenance Contributions to Commercial Air Transport Accidents 1, 2, 3,4, 5, Fatima Najeeb Khan y, Ayiei Ayiei y, John Murray y, Glenn Baxter y and Graham Wild 4,* 1 Institute of Aviation Studies, The University of Management and Technology, Johar Town, Lahore, Punjab 54770, Pakistan; [email protected] 2 School of Engineering, RMIT University, Melbourne 3000, Australia; [email protected] 3 School of Engineering, Edith Cowan University, Joondalup 6027, Australia; [email protected] 4 School of Engineering and Information Technology, University of New South Wales, Canberra 2612, Australia 5 School of Tourism and Hospitality Management, Suan Dusit University, Bangkok 77110, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +61-2-6268-8672 These authors contributed equally to this work. y Received: 14 August 2020; Accepted: 26 August 2020; Published: 2 September 2020 Abstract: Aircraft maintenance includes all the tasks needed to ensure an aircraft’s continuing airworthiness. Accidents that result from these maintenance activities can be used to assess safety. This research seeks to undertake a preliminary investigation of accidents that have maintenance contributions. An exploratory design was utilized, which commenced with a content analysis of the accidents with maintenance contributions (n = 35) in the official ICAO accident data set (N = 1277), followed by a quantitative ex-post facto study. Results showed that maintenance contributions are involved in 2.8 0.9% of ICAO official accidents. Maintenance accidents were also found to be ± more likely to have one or more fatalities (20%), compared to all ICAO official accidents (14.7%).
    [Show full text]
  • International Civil Aviation Organization Runway and Ground
    RGS WG/5-WP/12 21/11/2018 International Civil Aviation Organization Runway and Ground Safety Working Group Fifth Meeting (RGS WG/5) (Cairo, Egypt, 25-27 November 2018) Agenda Item 3: Implementation of Aerodrome Safety Priorities and Objectives in the MID Region APRON MANAGEMENT – DRAFT REGIONAL SAFETY ADVISORY (Presented by the United Arab Emirates) SUMMARY This Working Paper presents the draft of the Regional Safety Advisory (RSA) circular based on national regulation and guidance material from the United Arab Emirates (UAE) for Aerodrome Airside Safety Management, which aims to promote safety in a rapidly growing aviation sector. Action by the meeting is at paragraph 3. 1. INTRODUCTION 1.1 UAE presented WP/3 to the fourth meeting of the Runway & Ground Safety Working Group (RSG WG/4) on initiatives to promote safe and efficient Apron Management - UAE Airside Management Guidance Material. 1.2 The meeting is invited to recall Safety Enhancement Initiative Ground Handling Operations and Safety (MID-RAST/RGS/7) with action for UAE to develop a RSA on Apron Management Safety. 2. DISCUSSION 2.1 A draft RSA on Apron Management (Appendix A) was developed further to the expertise and experience of the General Civil Aviation Authority of the UAE based on their regulation, guidance materials and processes in consultation with Egyptian Civil Aviation Authority. The RSA is in support of the runway and ground safety enhancement initiatives undertaken by the ICAO Regional Aviation Safety Group – Middle East (RASG-MID) and the associated RSG WG. RGS WG/5-WP/12 - 2 - 3. ACTION BY THE WORKING GROUP 3.1 The meeting is invited to: a) note the information contained in this paper; and b) further to discussion during the meeting, review and provide feedback to ICAO MID no later than 31 March 2019 regarding the content of the guidance material in the draft RSA on Apron Management included in Appendix A.
    [Show full text]
  • Electrify Your Ground Handling
    Full electric drive Radio remotely controlled Only 1 person required for operation No driving license required Minimal operating costs Minimal maintenance costs German Engineering up to 25 pushbacks with with Passion. 25 one battery charge 3 only 3 hours battery Electrify your h recharging time HANGAR PUSHBACK OPTIMIZATION Ideal for Hangar and Ground Handling. Pushback operations The safest and most effective way of moving aircraft towbarless: SPACER 8600 HANGAR TOWING PUSHBACK OPTIMIZATION CAPACITY UP TO 95 t (210.000 lbs) 3520 / 08-2016 3520 Design Philosophy The underlying philosophy to the design of all our equipment is that it utilises the latest technology applicable to its sphere of operation and is (relatively) lightweight and portable in nature. All Mototok tugs are equipped with the most modern processor con- trolled electronic components. To reduce the susceptance to failure Mototok SPACER comes up with an integrated CAN-BUS. For moving aircraft easily with an MTOW up to 95 tonnes Mototok SPACER is equipped with two powerful AC motors of the highest quality of German manufacture. Mototoks batteries are on the same highest technological level – German manufacture aswell. The battery charger with electrolyte circulation and microprocessor regulation ensures a rapid and gentle charging of the batteries in 3 hours. The 4 biggest advantages of 3. Flexible. using an electric driven Mototok tug • Maneuver a wide range of aircraft with the same 1. Cost effective. Mototok-model. • Low personnel costs by means of wireless transmission con- • Connect the aircraft from the front or the rear. trol – the operator is essentially a “wing walker” himself.
    [Show full text]