Whole-Genome Sequencing Analysis of Semi-Supercentenarians
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ensembl Genomes: Extending Ensembl Across the Taxonomic Space P
Published online 1 November 2009 Nucleic Acids Research, 2010, Vol. 38, Database issue D563–D569 doi:10.1093/nar/gkp871 Ensembl Genomes: Extending Ensembl across the taxonomic space P. J. Kersey*, D. Lawson, E. Birney, P. S. Derwent, M. Haimel, J. Herrero, S. Keenan, A. Kerhornou, G. Koscielny, A. Ka¨ ha¨ ri, R. J. Kinsella, E. Kulesha, U. Maheswari, K. Megy, M. Nuhn, G. Proctor, D. Staines, F. Valentin, A. J. Vilella and A. Yates EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK Received August 14, 2009; Revised September 28, 2009; Accepted September 29, 2009 ABSTRACT nucleotide archives; numerous other genomes exist in states of partial assembly and annotation; thousands of Ensembl Genomes (http://www.ensemblgenomes viral genomes sequences have also been generated. .org) is a new portal offering integrated access to Moreover, the increasing use of high-throughput genome-scale data from non-vertebrate species sequencing technologies is rapidly reducing the cost of of scientific interest, developed using the Ensembl genome sequencing, leading to an accelerating rate of genome annotation and visualisation platform. data production. This not only makes it likely that in Ensembl Genomes consists of five sub-portals (for the near future, the genomes of all species of scientific bacteria, protists, fungi, plants and invertebrate interest will be sequenced; but also the genomes of many metazoa) designed to complement the availability individuals, with the possibility of providing accurate and of vertebrate genomes in Ensembl. Many of the sophisticated annotation through the similarly low-cost databases supporting the portal have been built in application of functional assays. -
Rare Variant Contribution to Human Disease in 281,104 UK Biobank Exomes W 1,19 1,19 2,19 2 2 Quanli Wang , Ryan S
https://doi.org/10.1038/s41586-021-03855-y Accelerated Article Preview Rare variant contribution to human disease W in 281,104 UK Biobank exomes E VI Received: 3 November 2020 Quanli Wang, Ryan S. Dhindsa, Keren Carss, Andrew R. Harper, Abhishek N ag, I oa nn a Tachmazidou, Dimitrios Vitsios, Sri V. V. Deevi, Alex Mackay, EDaniel Muthas, Accepted: 28 July 2021 Michael Hühn, Sue Monkley, Henric O ls so n , S eb astian Wasilewski, Katherine R. Smith, Accelerated Article Preview Published Ruth March, Adam Platt, Carolina Haefliger & Slavé PetrovskiR online 10 August 2021 P Cite this article as: Wang, Q. et al. Rare variant This is a PDF fle of a peer-reviewed paper that has been accepted for publication. contribution to human disease in 281,104 UK Biobank exomes. Nature https:// Although unedited, the content has been subjectedE to preliminary formatting. Nature doi.org/10.1038/s41586-021-03855-y (2021). is providing this early version of the typeset paper as a service to our authors and Open access readers. The text and fgures will undergoL copyediting and a proof review before the paper is published in its fnal form. Please note that during the production process errors may be discovered which Ccould afect the content, and all legal disclaimers apply. TI R A D E T A R E L E C C A Nature | www.nature.com Article Rare variant contribution to human disease in 281,104 UK Biobank exomes W 1,19 1,19 2,19 2 2 https://doi.org/10.1038/s41586-021-03855-y Quanli Wang , Ryan S. -
A New Model for X-Linked Tremor/Ataxia
© 2016. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2016) 9, 553-562 doi:10.1242/dmm.022848 RESEARCH ARTICLE Spontaneous shaker rat mutant – a new model for X-linked tremor/ ataxia Karla P. Figueroa1, Sharan Paul1, Tito Calì2, Raffaele Lopreiato2, Sukanya Karan1, Martina Frizzarin2, Darren Ames3, Ginevra Zanni4, Marisa Brini5, Warunee Dansithong1, Brett Milash3, Daniel R. Scoles1, Ernesto Carafoli6 and Stefan M. Pulst1,* ABSTRACT mode of inheritance. Here, we describe the genetic analysis of the The shaker rat is an X-linked recessive spontaneous model of shaker rat, a model of Purkinje cell (PC) degeneration. This mutant progressive Purkinje cell (PC) degeneration exhibiting a shaking arose spontaneously and was observed in Sprague Dawley (SD) ataxia and wide stance. Generation of Wistar Furth (WF)/Brown outbred stock in 1991 at Saint Louis University, first described by Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib La Regina et al. (1992), and the phenotype of whole-body tremor, ‘ ’ offspring using polymorphic markers narrowed the candidate gene ataxia and wide stance designated as shaker . The shaker trait was region to 26 Mbp denoted by the last recombinant genetic marker reported as an X-linked recessive trait. DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF Various animal models of spontaneously occurring mutants that background, the shaker mutation has complete penetrance, results in parallel some aspects of human hereditary ataxia have been a stereotypic phenotype and there is a narrow window for age of reported; for example, weaver, lurcher, stumbler, tottering and disease onset; by contrast, the F2 hybrid phenotype was more varied, teetering mice (Chou et al., 1991; Frankel et al., 1994; Green and with a later age of onset and likely non-penetrance of the mutation. -
A Review and Appraisal of the DNA Damage Theory of Ageing
Mutation Research 728 (2011) 12–22 Contents lists available at ScienceDirect Mutation Research/Reviews in Mutation Research jo urnal homepage: www.elsevier.com/locate/reviewsmr Co mmunity address: www.elsevier.com/locate/mutres Review A review and appraisal of the DNA damage theory of ageing a,b a, Alex A. Freitas , Joa˜o Pedro de Magalha˜es * a Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK b School of Computing and Centre for BioMedical Informatics, University of Kent, Canterbury, CT2 7NF, UK A R T I C L E I N F O A B S T R A C T Article history: Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible Received 10 February 2011 breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a Received in revised form 2 May 2011 powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian Accepted 3 May 2011 tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been Available online 10 May 2011 linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Keywords: Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster Ageing depletion of stem cells, which in turn contributes to accelerated ageing. -
DF6079-TBRG4 Antibody
Affinity Biosciences website:www.affbiotech.com order:[email protected] TBRG4 Antibody Cat.#: DF6079 Concn.: 1mg/ml Mol.Wt.: 71kDa Size: 100ul,200ul Source: Rabbit Clonality: Polyclonal Application: WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500, ELISA(peptide) 1:20000-1:40000 *The optimal dilutions should be determined by the end user. Reactivity: Human,Mouse,Rat Purification: The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific). Specificity: TBRG4 Antibody detects endogenous levels of total TBRG4. Immunogen: A synthesized peptide derived from human TBRG4, corresponding to a region within C-terminal amino acids. Uniprot: Q969Z0 Description: TBRG4 (transforming growth factor beta regulator 4), also known as CPR2 (cell cycle progression restoration protein 2) or FASTKD4 (FAST kinase domain-containing protein 4), is a 631 amino acid protein that contains one RAP domain and belongs to the FAST kinase family. TBRG4 is ubiquitously expressed and may have a role in cell cycle progression. Existing as two alternatively spliced isoforms, the gene encoding TBRG4 maps to human chromosome 7p13. Chromosome 7 is approximately 158 million bases long, encodes over 1000 genes and makes up about 5% of the human genome. Chromosome 7 has been linked to Osteogenesis imperfecta, Pendred syndrome, Lissencephaly, Citrullinemia and Shwachman-Diamond syndrome. The deletion of a portion of the q arm of chromosome 7 is associated with Williams-Beuren syndrome, a condition characterized by mild mental retardation, an unusual comfort and friendliness with strangers and an elfin appearance. Deletions of portions of the q arm of chromosome 7 are also seen in a number of myeloid disorders including cases of acute myelogenous leukemia and myelodysplasia. -
Methods in and Applications of the Sequencing of Short Non-Coding Rnas" (2013)
University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Methods in and Applications of the Sequencing of Short Non- Coding RNAs Paul Ryvkin University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, Genetics Commons, and the Molecular Biology Commons Recommended Citation Ryvkin, Paul, "Methods in and Applications of the Sequencing of Short Non-Coding RNAs" (2013). Publicly Accessible Penn Dissertations. 922. https://repository.upenn.edu/edissertations/922 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/922 For more information, please contact [email protected]. Methods in and Applications of the Sequencing of Short Non-Coding RNAs Abstract Short non-coding RNAs are important for all domains of life. With the advent of modern molecular biology their applicability to medicine has become apparent in settings ranging from diagonistic biomarkers to therapeutics and fields angingr from oncology to neurology. In addition, a critical, recent technological development is high-throughput sequencing of nucleic acids. The convergence of modern biotechnology with developments in RNA biology presents opportunities in both basic research and medical settings. Here I present two novel methods for leveraging high-throughput sequencing in the study of short non- coding RNAs, as well as a study in which they are applied to Alzheimer's Disease (AD). The computational methods presented here include High-throughput Annotation of Modified Ribonucleotides (HAMR), which enables researchers to detect post-transcriptional covalent modifications ot RNAs in a high-throughput manner. In addition, I describe Classification of RNAs by Analysis of Length (CoRAL), a computational method that allows researchers to characterize the pathways responsible for short non-coding RNA biogenesis. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
Global Mapping of Herpesvirus-‐Host Protein Complexes Reveals a Novel Transcription
Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Infectious Disease and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Britt A. Glaunsinger, Chair Professor Laurent Coscoy Professor Qiang Zhou Spring 2015 Abstract Global mapping of herpesvirus-host protein complexes reveals a novel transcription strategy for late genes By Zoe Hartman Davis Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Britt A. Glaunsinger, Chair Mapping host-pathogen interactions has proven instrumental for understanding how viruses manipulate host machinery and how numerous cellular processes are regulated. DNA viruses such as herpesviruses have relatively large coding capacity and thus can target an extensive network of cellular proteins. To identify the host proteins hijacked by this pathogen, we systematically affinity tagged and purified all 89 proteins of Kaposi’s sarcoma-associated herpesvirus (KSHV) from human cells. Mass spectrometry of this material identified over 500 high-confidence virus-host interactions. KSHV causes AIDS-associated cancers and its interaction network is enriched for proteins linked to cancer and overlaps with proteins that are also targeted by HIV-1. This work revealed many new interactions between viral and host proteins. I have focused on one interaction in particular, that of a previously uncharacterized KSHV protein, ORF24, with cellular RNA polymerase II (RNAP II). All DNA viruses encode a class of genes that are expressed only late in the infectious cycle, following replication of the viral genome. -
(DDD) Project: What a Genomic Approach Can Achieve
The Deciphering Development Disorders (DDD) project: What a genomic approach can achieve RCP ADVANCED MEDICINE, LONDON FEB 5TH 2018 HELEN FIRTH DM FRCP DCH, SANGER INSTITUTE 3,000,000,000 bases in each human genome Disease & developmental Health & development disorders Fascinating facts about your genome! –~20,000 protein-coding genes –~30% of genes have a known role in disease or developmental disorders –~10,000 protein altering variants –~100 protein truncating variants –~70 de novo mutations (~1-2 coding ie. In exons of genes) Rare Disease affects 1 in 17 people •Prior to DDD, diagnostic success in patients with rare paediatric disease was poor •Not possible to diagnose many patients with current methodology in routine use– maximum benefit in this group •DDD recruited patients with severe/extreme clinical features present from early childhood with high expectation of genetic basis •Recruitment was primarily of trios (ie The Doctor Sir Luke Fildes (1887) child and both parents) ~ 90% Making a genomic diagnosis of a rare disease improves care •Accurate diagnosis is the cornerstone of good medical practice – informing management, treatment, prognosis and prevention •Enables risk to other family members to be determined enabling predictive testing with potential for surveillance and therapy in some disorders February 28th 2018 •Reduces sense of isolation, enabling better access to support and information •Curtails the diagnostic odyssey •Not just a descriptive label; identifies the fundamental cause of disease A genomic diagnosis can be a gateway to better treatment •Not just a descriptive label; identifies the fundamental cause of disease •Biallelic mutations in the CFTR gene cause Cystic Fibrosis • CFTR protein is an epithelial ion channel regulating absorption/ secretion of salt and water in the lung, sweat glands, pancreas & GI tract. -
Different Evolutionary Patterns of Snps Between Domains and Unassigned Regions in Human Protein‑Coding Sequences
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mol Genet Genomics (2016) 291:1127–1136 DOI 10.1007/s00438-016-1170-7 ORIGINAL ARTICLE Different evolutionary patterns of SNPs between domains and unassigned regions in human protein‑coding sequences Erli Pang1 · Xiaomei Wu2 · Kui Lin1 Received: 14 September 2015 / Accepted: 18 January 2016 / Published online: 30 January 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Protein evolution plays an important role in Furthermore, the selective strength on domains is signifi- the evolution of each genome. Because of their functional cantly greater than that on unassigned regions. In addition, nature, in general, most of their parts or sites are differently among all of the human protein sequences, there are 117 constrained selectively, particularly by purifying selection. PfamA domains in which no SNPs are found. Our results Most previous studies on protein evolution considered indi- highlight an important aspect of protein domains and may vidual proteins in their entirety or compared protein-coding contribute to our understanding of protein evolution. sequences with non-coding sequences. Less attention has been paid to the evolution of different parts within each pro- Keywords Human genome · Protein-coding sequence · tein of a given genome. To this end, based on PfamA anno- Protein domain · SNPs · Natural selection tation of all human proteins, each protein sequence can be split into two parts: domains or unassigned regions. Using this rationale, single nucleotide polymorphisms (SNPs) in Introduction protein-coding sequences from the 1000 Genomes Project were mapped according to two classifications: SNPs occur- Studying protein evolution is crucial for understanding ring within protein domains and those within unassigned the evolution of speciation and adaptation, senescence and regions. -
Metastatic Adrenocortical Carcinoma Displays Higher Mutation Rate and Tumor Heterogeneity Than Primary Tumors
ARTICLE DOI: 10.1038/s41467-018-06366-z OPEN Metastatic adrenocortical carcinoma displays higher mutation rate and tumor heterogeneity than primary tumors Sudheer Kumar Gara1, Justin Lack2, Lisa Zhang1, Emerson Harris1, Margaret Cam2 & Electron Kebebew1,3 Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and high mortality due to metastatic disease. All reported genetic alterations have been in primary ACC, and it is 1234567890():,; unknown if there is molecular heterogeneity in ACC. Here, we report the genetic changes associated with metastatic ACC compared to primary ACCs and tumor heterogeneity. We performed whole-exome sequencing of 33 metastatic tumors. The overall mutation rate (per megabase) in metastatic tumors was 2.8-fold higher than primary ACC tumor samples. We found tumor heterogeneity among different metastatic sites in ACC and discovered recurrent mutations in several novel genes. We observed 37–57% overlap in genes that are mutated among different metastatic sites within the same patient. We also identified new therapeutic targets in recurrent and metastatic ACC not previously described in primary ACCs. 1 Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 2 Center for Cancer Research, Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. 3 Department of Surgery and Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA. Correspondence and requests for materials should be addressed to E.K. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4172 | DOI: 10.1038/s41467-018-06366-z | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06366-z drenocortical carcinoma (ACC) is a rare malignancy with types including primary ACC from the TCGA to understand our A0.7–2 cases per million per year1,2. -
Human Cumulus Cells in Long-Term in Vitro Culture Reflect Differential
cells Article Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging—A Study of New Molecular Markers Bła˙zejChermuła 1, Wiesława Kranc 2 , Karol Jopek 3, Joanna Budna-Tukan 3 , Greg Hutchings 2,4, Claudia Dompe 3,4, Lisa Moncrieff 3,4 , Krzysztof Janowicz 2,4, Małgorzata Józkowiak 5, Michal Jeseta 6 , Jim Petitte 7 , Paul Mozdziak 8 , Leszek Pawelczyk 1, Robert Z. Spaczy ´nski 1 and Bartosz Kempisty 2,3,6,9,* 1 Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; [email protected] (B.C.); [email protected] (L.P.); [email protected] (R.Z.S.) 2 Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland; [email protected] (W.K.); [email protected] (G.H.); [email protected] (K.J.) 3 Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland; [email protected] (K.J.); [email protected] (J.B.-T.); [email protected] (C.D.); l.moncrieff[email protected] (L.M.) 4 The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK 5 Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; [email protected] 6 Department of Obstetrics and Gynecology, University Hospital and