Plasticity and Proprioception in Insects I

Total Page:16

File Type:pdf, Size:1020Kb

Plasticity and Proprioception in Insects I J. exp. Biol. 116, 435-461 (1985) 435 Printed in Great Britain © The Company of Biologists Limited 1985 PLASTICITY AND PROPRIOCEPTION IN INSECTS I. RESPONSES AND CELLULAR PROPERTIES OF INDIVIDUAL RECEPTORS OF THE LOCUST METATHORACIC FEMORAL CHORDOTONAL ORGAN BY SASHA N. ZILL* Department of Biology, University of Oregon, Eugene, Oregon 97403, U.SA.. Accepted 12 October 1984 SUMMARY 1. The metathoracic femoral chordotonal organ is a joint angle receptor of the locust hindleg. It consists of 45—55 bipolar sensory neurones located distally in the femur and mechanically coupled to the tibia. 2. Responses of receptors of the organ were examined by extracellular and intracellular recording. The organ as a whole encodes the angle of the femoro- tibial joint but shows substantial hysteresis. Tonic activity is greatest at the extremes of joint position. 3. The organ possesses no direct linkage to tibial muscle fibres and shows no response to resisted muscle contractions in most ranges of joint angle. However, responses to extensor muscle contractions are obtained when the tibia is held in full flexion due to specializations of the femoro-tibial joint. These responses could be of importance in signalling preparedness for a jump. 4. Intracellular soma recordings of activity in individual receptors indicate that the organ contains two types of receptors: phasic units that respond to joint movement and tonic units that encode joint position and also show some response to movement. All units are directionally sensitive and respond only in limited ranges of joint angle. 5. Some phasic units increase firing frequency with increasing rate of movement and thus encode joint velocity. Other phasic units fire only single action potentials and can encode only the occurrence and direction of joint movement. All tonic units increase activity in the extremes of joint position and show substantial hysteresis upon return to more median positions. 6. Direct soma depolarization produces different responses in different types of units: phasic receptors show only transient discharges to current injection; tonic receptors exhibit sustained increases in activity that are followed by periods of inhibition of background firing upon cessation of current injection. 7. Receptors of the chordotonal organ are separable into two major groups, based upon their response characteristics, soma location and dendritic orientation: a dorsal group of receptors contains tonic units that respond in ranges of joint flexion (joint angle 0-80°) and phasic units that respond to •Present address: Department of Anatomy, University of Colorado Medical School, Denver, Colorado 80262, U.S.A. Key words: Joint angle receptors, proprioception, cellular physiology. 436 S. N. ZILL flexion movements; a ventral group of sensilla contains tonic units active in ranges of joint extension (joint angle 80-170°) and phasic receptors that respond to extension movements. 8. The response properties of these receptors are discussed with reference to the potential functions of the chordotonal organ in the locust's behavioural repertoire. INTRODUCTION Many sense organs, in both vertebrates and invertebrates, precisely monitor the angles of joints of appendages (Granit, 1955; Mill, 1976). While the responses of joint angle receptors of vertebrates have been studied in detail (Boyd & Roberts, 1953; Ferrell, 1977), little is known about how information provided by these receptors is incorporated into behaviour (Grigg, Harrigan & Fogarty, 1978; Baxendale & Ferrell, 1981). In contrast, recent work in invertebrates has shown that during certain behaviour, such as walking (Graham & Bassler, 1981) and jumping (Steeves & Pearson, 1982), input from joint angle receptors can extensively modify posture and movement. However, other more stereotyped behaviour, such as stridulation (Bassler, 1979) and flight (Wilson, 1961), can be performed in the absence of inputs from joint angle receptors or with this input experimentally disrupted. Despite the advantageous accessibility of invertebrate nervous systems for study at a cellular level (Hoyle & Burrows, 1973), the neuronal mechanisms underlying this implied plasticity of behavioural effects of joint angle receptors have not yet been determined. The present series of investigations, therefore, were undertaken to study a single, identified group of joint angle receptors of the locust hindleg, the metathoracic femoral chordotonal organ. The goals of these investigations are to define the properties of sensory and motor elements of the locust nervous system that determine the functions of this group of receptors and permit flexibility of coupling in behaviour. The locust metathoracic femoral chordotonal organ was first described by Usherwood, Runion & Campbell (1968), who examined the morphology and responses of the organ and identified it as a joint angle receptor. However, a number of basic questions remained as to the responses of the organ. As noted by Burrows & Horridge (1974, p.59): 'No doubt many motorneuron responses to joint motion are due to the chordotonal organ, but inferences about its central action are limited because we lack the following details: (a) whether some or all units are directional in their response, (b) whether the two directions of motion excite the same or different units in different parts of the range, (c) whether vibration at different parts of the range excites different units which could thus signal position although not tonically.' Further, a number of experiments by Bassler (1968), utilizing lesion or disruption of afferent input, have shown that the organ can substantially affect walking and jumping. However, the interpretation of some of these experiments has been confused by a lack of knowledge about the effects of these operations on chordotonal organ output. For example, Bassler (1968) showed that after cutting one of the ligaments of the organ, jumping could not be elicited. Heitler & Burrows (1977) attributed this Insect proprioception 437 effect, not to a discrete function of the chordotonal organ in the jump, but rather to the fact that the locust perceived its joint as fully extended. In contrast, Pearson, Heitler & Steeves (1980) postulated that the chordotonal organ provided inputs that specifically triggered jumping, although the mechanism by which a joint angle receptor could trigger a movement in a joint held immobile by the co-contraction of antagonist muscles was not determined. The first paper in this series, therefore, re-examines the basic morphology and responses of the chordotonal organ, and also studies the responses of individual receptors by intracellular recording. Subsequent papers utilize the information provided by this study to investigate the specific effects of the chordotonal organ upon motoneurones and interneurones. Few previous studies have examined the responses of chordotonal sensilla by intracellular recording (Mendelson, 1963, 1966), owing in part to technical problems. The locust femoral chordotonal organ has proved amenable to such studies. The cellular properties of these receptors may provide insight into the functions of joint angle receptors in behaviour. METHODS Adult male locusts {Schistocerca gregaria), provided by the University of British Columbia and maintained in laboratory cages at 25°C, were used in all experiments. Anatomy Animals (N = 7) were induced to autotomize one metathoracic leg that was pinned out in a Sylgard resin-coated dish, with the femoro-tibial joint angle at 80°. After removing the tarsus, the leg was gently perfused with Karnovsky's fixative for 30 min. The parts of the distal femur and proximal tibia containing the femoral chordotonal organ and its attachments were then cut out, dehydrated and embedded in Spurr's resin. Serial sections (2 fim) were taken either perpendicular or parallel to the long axis of the leg, stained with toluidine blue, and examined by light microscopy. Individual sections were traced through a drawing tube onto acetate sheets and composite overlays were constructed. Physiology Extracellular recordings Intact animals were restrained in wax so that the outer surface of the femur was held in a horizontal plane facing upwards. A small window was cut into the distal femur to expose the main ligament and flexor attachment of the organ and to cut nerves distal to the receptors. Another window was cut 8-10 mm proximal to the organ and multi- unit recordings were taken from the whole nerve 5bl (Campbell, 1961) using hook electrodes. The femoro-tibial joint angle was monitored either by a potentiometer attached to the tibia (Young, 1970) or with a capacitative transducer (Sandeman, 438 S. N. ZILL 1968). Movements of the tibia were generated manually or with a piezoelectric crystal (as described below). All data were stored on tape for subsequent analysis. Intracellular recordings Animals were mounted dorsal side up and the metathoracic legs held in wax so that the inner surface of one femur was in a horizontal plane (Fig. 1). An insect pin, whose ends had been bent into small loops, was glued to the proximal tibia. One of these loops served as a swivel joint when linked to another pin that was attached to the end of a piezoelectric crystal. The crystal generated smooth movements of the tibia when driven by voltages derived from a wave-form generator. Movements were monitored by a photoelectric cell placed close to a flag that was attached to the tibia. To expose the femoral chordotonal organ, a small window was cut in the cuticle of the distal femur. The tibia was then fully extended and a section of the tendon of the extensor tibiae muscle was removed. The joint was then moved to an angle of 45 ° and a Intracellular electrode Femur PE crystal Pin Fig. 1. Diagram of preparation for intracellular recording. A locust is mounted in wax so that one metathoracic leg lies in a horizontal plane with its inner (medial) surface upwards. Changes in tibial position are generated by a piezoelectric crystal (PE crystal) linked to the tibia by a small pin. Displacements are monitored by a photocell placed close to a flag attached to the distal tibia. A small window is cut in the distal femur to expose the femoral chordotonal organ (CO, enlarged for clarity).
Recommended publications
  • Johnston´S Organ As a Mechanosensory Element for Spatial Orientation in Rhodnius Prolixus
    Johnston´s organ as a mechanosensory element for spatial orientation in Rhodnius prolixus Bibiana Ospina-Rozo; Manu Forero-Shelton, Jorge Molina Flagellar antennae in the class Insecta generally bear two basal segments (scape and pedicel) and a segmented flagellum lacking intrinsic muscles (Schneider, 1964). In the non-muscular joint between the pedicel and the flagellum is located the Johnston’s organ (JO). This organ is a chordotonal complex consisting of sub-unities called scolopidia, each one bearing one to three specialized sensory neurons (Yack, 2004). These neurons are capable of detecting the movement of the flagellum, and transducing it into action potentials (Yack, 2004). These two features: the lack of intrinsic muscles beyond the scape and the presence of the JO are considered synapomorphic traits for the class Insecta (Kristensen, 1998; Kristensen, 1981). The Johnston’s organ has been deeply studied in groups of Holometabolous insects, and it has been proven to have many important and diverse functions such as flight control (Sane et al., 2007), near- field hearing (Kamikouchi et al., 2009) and detection of electric fields (Greggers et al., 2013), among others. In holometabolous insects the JO can have variable number of scolopidia. Higher numbers and organization of scolopidia are considered either a strategy to enhance resolution like near-field sound detection in males of Aedes genus with 7000 scolopidia (Boo & Richards, 1975), or a way to ensure various functions as in Drosophila, where the JO consists of 200 scolopidia divided into 5 regions and capable of codifying wind direction, near-field sound and gravity direction (Kamikouchi et al., 2009).
    [Show full text]
  • Computational Models of Proprioception
    Available online at www.sciencedirect.com ScienceDirect A leg to stand on: computational models of proprioception 1,4 2,4 Chris J Dallmann , Pierre Karashchuk , 3,5 1,5 Bingni W Brunton and John C Tuthill Dexterous motor control requires feedback from interacts with motor circuits to control the body remains proprioceptors, internal mechanosensory neurons that sense a fundamental problem in neuroscience. the body’s position and movement. An outstanding question in neuroscience is how diverse proprioceptive feedback signals An effective method to investigate the function of sensory contribute to flexible motor control. Genetic tools now enable circuits is to perturb neural activity and measure the targeted recording and perturbation of proprioceptive neurons effect on an animal’s behavior. For example, activating in behaving animals; however, these experiments can be or silencing neurons in the mammalian visual cortex [4] or challenging to interpret, due to the tight coupling of insect optic glomeruli [5] has identified the circuitry and proprioception and motor control. Here, we argue that patterns of activity that underlie visually guided beha- understanding the role of proprioceptive feedback in viors. However, due to the distributed nature of proprio- controlling behavior will be aided by the development of ceptive sensors and their tight coupling with motor con- multiscale models of sensorimotor loops. We review current trol circuits, perturbations to the proprioceptive system phenomenological and structural models for proprioceptor can be difficult to execute and tricky to interpret. encoding and discuss how they may be integrated with existing models of posture, movement, and body state estimation. Mechanical perturbation experiments Early efforts to understand the behavioral contributions Addresses 1 of proprioceptive feedback relied on lesions and mechan- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA ical perturbations.
    [Show full text]
  • Development of Johnston's Organ in Drosophila
    Int. J. Dev. Biol. 51: 679-687 (2007) doi: 10.1387/ijdb.072364de Development of Johnston’s organ in Drosophila DANIEL F. EBERL*,1 and GRACE BOEKHOFF-FALK2 1Department of Biology, University of Iowa, Iowa City, IA and 2Department of Anatomy, University of Wisconsin, Madison, WI, USA ABSTRACT Hearing is a specialized mechanosensory modality that is refined during evolution to meet the particular requirements of different organisms. In the fruitfly, Drosophila, hearing is mediated by Johnston’s organ, a large chordotonal organ in the antenna that is exquisitely sensitive to the near-field acoustic signal of courtship songs generated by male wing vibration. We summarize recent progress in understanding the molecular genetic determinants of Johnston’s organ development and discuss surprising differences from other chordotonal organs that likely facilitate hearing. We outline novel discoveries of active processes that generate motion of the antenna for acute sensitivity to the stimulus. Finally, we discuss further research directions that would probe remaining questions in understanding Johnston’s organ development, function and evolution. KEY WORDS: audition, hearing, scolopidia, chordotonal organ, active mechanics Introduction Drosophila chordotonal organs and their functions Practically the entire progress in genetic and molecular Selection pressures on the functions of specific sense or- elucidation of hearing mechanisms in the fruitfly, Drosophila gans have long-term effects on whether those functions will be melanogaster has occurred in the last decade. The Johnston’s maintained and further perfected, whether functions will be organ (JO), located in the fly’s antenna, formally has been attenuated, even lost, or whether novel functions will arise. The confirmed as the major auditory organ and mutations in many diverse chordotonal organs of Drosophila almost certainly de- genes required for hearing have been identified using a variety rive from a common ancestral mechanosensor whose develop- of approaches.
    [Show full text]
  • Using Drosophila to Study Mechanisms of Hereditary Hearing Loss Tongchao Li1,*, Hugo J
    © 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm031492. doi:10.1242/dmm.031492 REVIEW Using Drosophila to study mechanisms of hereditary hearing loss Tongchao Li1,*, Hugo J. Bellen1,2,3,4,5 and Andrew K. Groves1,3,5,‡ ABSTRACT Keats and Corey, 1999; Kimberling et al., 2010; Mathur and Yang, Johnston’s organ – the hearing organ of Drosophila – has a very 2015). It is an autosomal recessive genetic disease, characterized by different structure and morphology to that of the hearing organs of varying degrees of deafness and retinitis pigmentosa-induced vision vertebrates. Nevertheless, it is becoming clear that vertebrate and loss. Although our understanding of genetic hearing loss has invertebrate auditory organs share many physiological, molecular advanced greatly over the past 20 years (Vona et al., 2015), there is a and genetic similarities. Here, we compare the molecular and cellular pressing need for experimental systems to understand the function features of hearing organs in Drosophila with those of vertebrates, of the proteins encoded by deafness genes. The mouse is well and discuss recent evidence concerning the functional conservation established as a model for studying human genetic deafness (Brown of Usher proteins between flies and mammals. Mutations in Usher et al., 2008), but other model organisms, such as the fruit fly genes cause Usher syndrome, the leading cause of human deafness Drosophila, might also provide convenient and more rapid ways to and blindness. In Drosophila, some Usher syndrome proteins appear assay the function of candidate deafness genes. to physically interact in protein complexes that are similar to those In mammals, mechanosensitive hair cells reside in a specialized described in mammals.
    [Show full text]
  • Proneural Genes and the Specification of Neural Cell Types
    REVIEWS PRONEURAL GENES AND THE SPECIFICATION OF NEURAL CELL TYPES Nicolas Bertrand*, Diogo S. Castro* and François Guillemot Certain morphological, physiological and molecular characteristics are shared by all neurons. However, despite these similarities, neurons constitute the most diverse cell population of any organism. Recently, considerable attention has been focused on identifying the molecular mechanisms that underlie this cellular diversity. Parallel studies in Drosophila and vertebrates have revealed that proneural genes are key regulators of neurogenesis, coordinating the acquisition of a generic neuronal fate and of specific subtype identities that are appropriate for the location and time of neuronal generation. These studies reveal that, in spite of differences between invertebrate and vertebrate neural lineages, Drosophila and vertebrate proneural genes have remarkably similar roles. BASIC HELIX–LOOP–HELIX Building a nervous system involves the production of a ‘proneural genes’,which encode transcription factors of A structural motif that is present vast array of neuronal and glial cell types that must be the BASIC HELIX–LOOP–HELIX (bHLH) class, are both neces- in many transcription factors, produced in the correct numbers and at appropriate sary and sufficient, in the context of the ectoderm, which is characterized by two positions. The uniform epithelial sheath that constitutes to initiate the development of neuronal lineages and to α-helices separated by a loop. The helices mediate the primordium of the nervous system in invertebrate promote the generation of progenitors that are com- dimerization, and the adjacent and vertebrate embryos consists of cells that have the mitted to differentiation. Importantly, proneural genes basic region is required for DNA potential to generate both neurons and glia.
    [Show full text]
  • Morphology and Physiology of the Prosternal Chordotonal Organ of the Sarcophagid Fly Sarcophaga Bullata (Parker)
    ARTICLE IN PRESS Journal of Insect Physiology 53 (2007) 444–454 www.elsevier.com/locate/jinsphys Morphology and physiology of the prosternal chordotonal organ of the sarcophagid fly Sarcophaga bullata (Parker) Heiko Sto¨lting, Andreas Stumpner, Reinhard Lakes-Harlanà Universita¨tGo¨ttingen, Institut fu¨r Zoologie und Anthropologie, Berliner Strasse 28, D-37073 Go¨ttingen, Germany Received 6 September 2006; received in revised form 18 January 2007; accepted 18 January 2007 Abstract The anatomy and the physiology of the prosternal chordotonal organ (pCO) within the prothorax of Sarcophaga bullata is analysed. Neuroanatomical studies illustrate that the approximately 35 sensory axons terminate within the median ventral association centre of the different neuromeres of the thoracico-abdominal ganglion. At the single-cell level two classes of receptor cells can be discriminated physiologically and morphologically: receptor cells with dorso-lateral branches in the mesothoracic neuromere are insensitive to frequencies below approximately 1 kHz. Receptor cells without such branches respond most sensitive at lower frequencies. Absolute thresholds vary between 0.2 and 8 m/s2 for different frequencies. The sensory information is transmitted to the brain via ascending interneurons. Functional analyses reveal a mechanical transmission of forced head rotations and of foreleg vibrations to the attachment site of the pCO. In summed action potential recordings a physiological correlate was found to stimuli with parameters of leg vibrations, rather than to those of head rotation. The data represent a first physiological study of a putative predecessor organ of an insect ear. r 2007 Elsevier Ltd. All rights reserved. Keywords: Vibration; Proprioception; Evolution; Insect 1. Introduction Lakes-Harlan et al., 1999).
    [Show full text]
  • The Auditory Sense of the Honey-Bee
    AUTEOR'S ABSTRACT OF THIS PAPER ISSOED BY TEE BIBLIOGRAPEIC SERVICE. MARCH 20 THE AUDITORY SENSE OF THE HONEY-BEE N. E. McINDOO Bureau of Entomology, Washington, D. C. TTVENTY-SIX FIGURES CONTENTS Introduction and methods.. ............. .............................. 173 So-called vocal organs of insects. .......................................... 175 1. Sound-producing organ of honey-bee .................................. 175 a. Experiments to determine how bees make sounds. ........... 175 b. Morphology of sound-producing organ. ........... ........... 176 2. Sound-producing organs of other insects.. ... .................... 179 So-called auditory organs of insects. .... Supposed auditory organs of honey-bee ..................... 180 a. Structure of Johnston's organ.. .. b. Structure of pore plates.. ............ .................... 186 c. Structure of other antenna1 organs. ................................. 189 d. Structure of tibial chordotonal organs e. Structure of tibial ganglion cells.. Summary. .................... Literature cited.. ......................................................... 198 INTRODUCTION AND METHODS Much has been written about the auditory sense of insects, but critics still contend that it has never been demonstrated be- yond a doubt that any insect can really hear. Most students on insect behavior believe that insects can hear, but only Turner and Schwarz ('14) and Turner ('14) seem to have produced good experimental evidence; however, they used only moths in their work. Much less is known about the sound perceptors in insects, and still it is not generally known how insects make sounds which are supposed to be heard by them. It is usually believed that insects can hear for the three tollowing reasons: 1) many have special sound-producing organs; 2) some have so-called auditory organs, and, 3) many of the experimental results obtained indicate that insects can hear.
    [Show full text]
  • Substrate Vibrations Mediate Behavioral Responses Via Femoral Chordotonal Organs in a Cerambycid Beetle
    Takanashi et al. Zoological Letters (2016) 2:18 DOI 10.1186/s40851-016-0053-4 RESEARCH ARTICLE Open Access Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle Takuma Takanashi1*, Midori Fukaya2,3, Kiyoshi Nakamuta1,6, Niels Skals1,4 and Hiroshi Nishino5 Abstract Background: Vibrational senses are vital for plant-dwelling animals because vibrations transmitted through plants allow them to detect approaching predators or conspecifics. Little is known, however, about how coleopteran insects detect vibrations. Results: We investigated vibrational responses of the Japanese pine sawyer beetle, Monochamus alternatus, and its putative sense organs. This beetle showed startle responses, stridulation, freezing, and walking in response to vibrations below 1 kHz, indicating that they are able to detect low-frequency vibrations. For the first time in a coleopteran species, we have identified the sense organ involved in the freezing behavior. The femoral chordotonal organ (FCO), located in the mid-femur, contained 60–70 sensory neurons and was distally attached to the proximal tibia via a cuticular apodeme. Beetles with operated FCOs did not freeze in response to low-frequency vibrations during walking, whereas intact beetles did. These results indicate that the FCO is responsible for detecting low- frequency vibrations and mediating the behavioral responses. We discuss the behavioral significance of vibrational responses and physiological functions of FCOs in M. alternatus. Conclusions: Our findings revealed that substrate vibrations mediate behavioral responses via femoral chordotonal organs in M. alternatus. Keywords: Behavior, Vibration, Sense organ, Coleoptera Abbreviations: CO, Chordotonal organ; FCO, Femoral chordotonal organ; MW, Molecular weight; SEM, Standard error of mean Background behavior or thanatosis (long-lasting freezing) [6–12].
    [Show full text]
  • Chordotonal Organs of Insects
    L.H. Field & T. Matheson Advances in Insect Physiology 27 (1998) Page 1 Chordotonal Organs of Insects Laurence H. Fielda and Thomas Mathesonb a Department of Zoology, University of Canterbury, PB 4800, Christchurch, New Zealand b Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK Please note that this PDF may differ very slightly from the published version as it was created from the original text and figures at a later date. All the page numbering is identical, except for the Plates (p 229, 230), which did not have page numbers and were inserted between pages 56 and 57 in the published version. 1. Introduction 2 2. Histological methods for chordotonal organs in insects 7 2.1 Histochemical staining of fixed tissue 7 2.2 Intravital perfusion techniques 8 2.3 Uptake of dye by cut axons and nerves; intracellular dye injection 8 2.4 Immunochemical techniques 9 3. Diversity in distribution, structure and function 11 3.1 Overview of diversity 11 3.2 Head 12 3.3 Thorax 14 3.4 Abdomen 22 3.5 Legs 25 4. Ultrastructure 40 4.1 General scolopidial structure 40 4.2 Method of fixation affects ultrastructure 41 4.3 The bipolar sensory neuron 42 4.4 The scolopale cell 61 4.5 The attachment cell 67 5. Mechanics of the scolopidium 69 5.1 Compliance of the scolopidium 70 5.2 Hypotheses for role of cilia in mechanical coupling 75 6. Transduction mechanisms 80 6.1 Mechanically activated channels (MACs) 80 6.2 Receptor currents and potentials 81 6.3 Transducer coupling to spike generator 83 7.
    [Show full text]
  • Sli Is Required for Proper Morphology and Migration of Sensory Neurons in the Drosophila PNS Madison Gonsior and Afshan Ismat*
    Gonsior and Ismat Neural Development (2019) 14:10 https://doi.org/10.1186/s13064-019-0135-z SHORT REPORT Open Access sli is required for proper morphology and migration of sensory neurons in the Drosophila PNS Madison Gonsior and Afshan Ismat* Abstract Neurons and glial cells coordinate with each other in many different aspects of nervous system development. Both types of cells are receiving multiple guidance cues to guide the neurons and glial cells to their proper final position. The lateral chordotonal organs (lch5) of the Drosophila peripheral nervous system (PNS) are composed of five sensory neurons surrounded by four different glial cells, scolopale cells, cap cells, attachment cells and ligament cells. During embryogenesis, the lch5 neurons go through a rotation and ventral migration to reach their final position in the lateral region of the abdomen. We show here that the extracellular ligand sli is required for the proper ventral migration and morphology of the lch5 neurons. We further show that mutations in the Sli receptors Robo and Robo2 also display similar defects as loss of sli, suggesting a role for Slit-Robo signaling in lch5 migration and positioning. Additionally, we demonstrate that the scolopale, cap and attachment cells follow the mis-migrated lch5 neurons in sli mutants, while the ventral stretching of the ligament cells seems to be independent of the lch5 neurons. This study sheds light on the role of Slit-Robo signaling in sensory neuron development. Keywords: Sli, Chordotonal neurons, PNS, Drosophila Introduction possible Slit-Robo signaling in the embryonic peripheral The nervous system is made up of neurons and glial cells.
    [Show full text]
  • Leg Chordotonal Organs and Campaniform Sensilla in Chrysoperlasteinmann1964
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2004 Band/Volume: 0013 Autor(en)/Author(s): Devetak Dusan, Pabst Maria Anna, Lipovsek Delakorda Saska Artikel/Article: Leg chordotonal organs and campaniform sensilla in Chrysoperla Steinmann 1964 (Neuroptera): structure and function 163-171 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Denisia 13 17.09.2004 163-171 Leg chordotonal organs and campaniform sensilla in Chrysoperla STEINMANN 1964 (Neuroptera): structure and function1 D. DEVETAK, M.A. PABST ft S. LIPOVSEK DELAKORDA Abstract: In green lacewings of the genus Chrysoperla STEINMANN 1964, recognition of sexual partner relies on courtship songs produced by species-specific volleys of abdominal vibration. Vibration signals are detected by sub- genual organs and, in short-distance communication, possibly also by some other leg mechanoreceptors. In legs of green lacewings, campaniform sensilla and four chordotonal organs are known by now. Gross morphology, ultra- structure and physiological properties of the leg mechanoreceptors and their possible role as vibratory detectors are reviewed. Green lacewings are able to detect substrate vibration at sensitivities sufficient to tell of the proximity of mates, competitors, or predators. Key words: chordotonal organs, subgenual organ, femoral chordotonal organ, campaniform sensilla, serotonin, ul- trastructure, electrophysiology, Chrysoperla. Introduction
    [Show full text]
  • Unc-4 Acts to Promote Neuronal Identity and Development of The
    RESEARCH ARTICLE Unc-4 acts to promote neuronal identity and development of the take-off circuit in the Drosophila CNS Haluk Lacin1,2*, W Ryan Williamson1, Gwyneth M Card1, James B Skeath2, James W Truman1,3 1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 2Department of Genetics, Washington University, Saint Louis, United States; 3Friday Harbor Laboratories, University of Washington, Friday Harbor, United States Abstract The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events. *For correspondence: [email protected] Introduction Competing interests: The How does a complex nervous system arise during development? Millions to billions of neurons, each authors declare that no one essentially unique, precisely interconnect to create a functional central nervous system (CNS) competing interests exist.
    [Show full text]