Chordotonal Organs of Insects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Aspects About Supella Longipalpa (Blattaria: Blattellidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2016; 6(12): 1065–1075 1065 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article http://dx.doi.org/10.1016/j.apjtb.2016.08.017 New aspects about Supella longipalpa (Blattaria: Blattellidae) Hassan Nasirian* Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: The brown-banded cockroach, Supella longipalpa (Blattaria: Blattellidae) (S. longipalpa), Received 16 Jun 2015 recently has infested the buildings and hospitals in wide areas of Iran, and this review was Received in revised form 3 Jul 2015, prepared to identify current knowledge and knowledge gaps about the brown-banded 2nd revised form 7 Jun, 3rd revised cockroach. Scientific reports and peer-reviewed papers concerning S. longipalpa and form 18 Jul 2016 relevant topics were collected and synthesized with the objective of learning more about Accepted 10 Aug 2016 health-related impacts and possible management of S. longipalpa in Iran. Like the Available online 15 Oct 2016 German cockroach, the brown-banded cockroach is a known vector for food-borne dis- eases and drug resistant bacteria, contaminated by infectious disease agents, involved in human intestinal parasites and is the intermediate host of Trichospirura leptostoma and Keywords: Moniliformis moniliformis. Because its habitat is widespread, distributed throughout Brown-banded cockroach different areas of homes and buildings, it is difficult to control. -
The Efficiency of Sound Production in Two Cricket Species, Gryllotalpa Australis and Teleogryllus Commodus (Orthoptera: Grylloidea)
J. exp. Biol. 130, 107-119 (1987) 107 Printed in Great Britain © The Company of Biologists Limited 1987 THE EFFICIENCY OF SOUND PRODUCTION IN TWO CRICKET SPECIES, GRYLLOTALPA AUSTRALIS AND TELEOGRYLLUS COMMODUS (ORTHOPTERA: GRYLLOIDEA) BY MARK W. KAVANAGH Department of Zoology, University of Melbourne, Parkville, Victoria, 3052, Australia Accepted 27 February 1987 SUMMARY 1. Males of Gryllotalpa australis (Erichson) (Gryllotalpidae) and Teleogryllus commodus (Walter) (Gryllidae) produced their calling songs while confined in respirometers. 2. G. australis males used oxygen during calling at a mean rate of 4-637 ml O2h^', equivalent to 27-65mW of metabolic energy, which was 13 times higher than the resting metabolic rate. T. commodus males used oxygen during calling at a rate of 0-728 ml O2h~', equivalent to 4-34mW, which was four times the resting metabolic rate. 3. The sound field during calling by males represents a sound power output of 0-27 mW for G. australis and l-51XlO~3mW for T. commodus. 4. The efficiency of sound production was 1-05% for males of G. australis and 0-05 % for males of T. commodus. Comparison with other insect species suggests that none is more than a few percent efficient in sound production. INTRODUCTION Many insect species produce stereotyped acoustic signals that are important in intraspecific communication. In most species that communicate by sound, the male's calling song, which seems to attract conspecific females, is the most obvious and the most important component of the repertoire. Production of the calling song will involve a cost to the producer in the form of an increased use of metabolic energy. -
UNIVERSITY of CALIFORNIA RIVERSIDE Isolation
UNIVERSITY OF CALIFORNIA RIVERSIDE Isolation, Determination of Absolute Stereochemistry, and Asymmetric Synthesis of Insect Methyl-Branched Hydrocarbons A Dissertation submitted in the partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry by Jan Edgar Bello June 2014 Dissertation Committee: Dr. Jocelyn G. Millar, Chairperson Dr. Thomas H. Morton Dr. Catharine Larsen Copyright by Jan Edgar Bello 2014 The Dissertation of Jan Edgar Bello is approved: ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgements This dissertation would not have been possible without the guidance, assistance, and support from both my academic and biological families. I would first and foremost like to thank my advisor Professor Jocelyn G. Millar, who has guided me through this rigorous process and has helped me become the chemical ecologist I am today. I would also like to thank my research group Dr. Steve McElfresh, Dr. Yunfan Zou, Dr. Rebeccah Waterworth, R. Max Collignon, Joshua Rodstein, Jackie Serrano, and Brian Hanley for all the suggestions, insect collecting, synthetic discussions, and experimental advise that have allowed me to complete this dissertation. I would like to send a huge thank you to my family who have always believed in me. To my mom and dad, thank you for your encouragement, for loving me, and for your support (both financial and emotional). To my siblings, Jonathan, Michelle, and John-C thank you for your encouragement and for praying for me, especially during the beginning of my PhD studies when things were overwhelming. I would also like to thank my friends, Ryan Neff, Lauren George, Jenifer N. -
A New Insect Trackway from the Upper Jurassic—Lower Cretaceous Eolian Sandstones of São Paulo State, Brazil: Implications for Reconstructing Desert Paleoecology
A new insect trackway from the Upper Jurassic—Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology Bernardo de C.P. e M. Peixoto1,2, M. Gabriela Mángano3, Nicholas J. Minter4, Luciana Bueno dos Reis Fernandes1 and Marcelo Adorna Fernandes1,2 1 Laboratório de Paleoicnologia e Paleoecologia, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 2 Programa de Pós Graduacão¸ em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 4 School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom ABSTRACT The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the Submitted 6 November 2019 ecological roles that different species of this group are capable of performing in dune Accepted 10 March 2020 deserts. -
Shifting Ranges of Two Tree Weta Species (Hemideina Spp.)
Journal of Biogeography (J. Biogeogr.) (2014) 41, 524–535 ORIGINAL Shifting ranges of two tree weta species ARTICLE (Hemideina spp.): competitive exclusion and changing climate Mariana Bulgarella*, Steven A. Trewick, Niki A. Minards, Melissa J. Jacobson and Mary Morgan-Richards Ecology Group, IAE, Massey University, ABSTRACT Palmerston North, 4442, New Zealand Aim Species’ responses to climate change are likely to depend on their ability to overcome abiotic constraints as well as on the suite of species with which they interact. Responses to past climate change leave genetic signatures of range expansions and shifts, allowing inferences to be made about species’ distribu- tions in the past, which can improve our ability to predict the future. We tested a hypothesis of ongoing range shifting associated with climate change and involving interactions of two species inferred to exclude each other via competition. Location New Zealand. Methods The distributions of two tree weta species (Hemideina crassidens and H. thoracica) were mapped using locality records. We inferred the likely mod- ern distribution of each species in the absence of congeneric competitors with the software Maxent. Range interaction between the two species on an eleva- tional gradient was quantified by transect sampling. Patterns of genetic diver- sity were investigated using mitochondrial DNA, and hypotheses of range shifts were tested with population genetic metrics. Results The realized ranges of H. thoracica and H. crassidens were narrower than their potential ranges, probably due to competitive interactions. Upper and lower elevational limits on Mount Taranaki over 15 years revealed expan- sion up the mountain for H. thoracica and a matching contraction of the low elevation limits of the range of H. -
Based on Comparative Morphological Data AF Emel'yanov Transactions of T
The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground. -
Under Percent
Listing Statement for Catadromus lacordairei (Green-lined Ground Beetle) Catadromus lacordairei Under percent Green-lined Ground Beetle T A S M A N I A N T H R E A T E N E D S P E C I E S L I S T I N G S T A T E M E N T Image Spencer & Richards Common name: Green-lined Ground Beetle Scientific name: Catadromus lacordairei Boisduval, 1835 Group: Invertebrate, Class Hexapoda, Order Coleoptera, Family Carabidae Name history: Catadromus Carabid Beetle Status: Threatened Species Protection Act 1995: vulnerable Environment Protection and Biodiversity Conservation Act 1999: Not listed IUCN Red List: Not listed Distribution: Endemic status: Not endemic to Tasmania Tasmanian NRM Regions: South, North 1 cm Figure 1. The distribution of the Green-lined Plate 1. The Green-lined Ground Beetle (images Ground Beetle in Tasmania, showing NRM regions Spencer & Richards) 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Listing Statement for Catadromus lacordairei (Green-lined Ground Beetle) SUMMARY specialist soil-dwelling predators. Nothing has The Green-lined Ground Beetle is a large and been recorded of the pupal phase. predatory ground-dwelling beetle, shiny black Adult Green-lined Ground Beetles are in colour and with a distinctive metallic green opportunistic predators/scavengers, taking a line down the other side of the body. The wide range of invertebrate prey, including species has only been recorded from a small oligochaetes (worms), coleopteran (beetle) number of sites in Tasmania, mainly in the larvae, dipteran (fly) larvae, Teleogryllus commodus northern and central Midlands. -
Virus Relatedness Predicts Susceptibility in Novel Host Species
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.16.431403; this version posted February 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Imrie et al. Virus relatedness predicts host susceptibility. 1 1 Virus relatedness predicts susceptibility in novel host species 2 3 Ryan M. Imrie*, Katherine E. Roberts, Ben Longdon 4 5 Centre for Ecology & Conservation, Biosciences, College of Life and Environmental Sciences, 6 University of Exeter, Penryn Campus, Penryn, Cornwall 7 *corresponding author: [email protected] 8 9 10 11 Abstract 12 As a major source of outbreaks and emerging infectious diseases, virus host shifts cause significant 13 health, social and economic damage. Predicting the outcome of infection with novel combinations of 14 virus and host remains a key challenge in virus research. Host evolutionary relatedness can explain 15 variation in transmission rates, virulence, and virus community composition between host species, 16 but there is much to learn about the potential for virus evolutionary relatedness to explain variation 17 in the ability of viruses to infect novel hosts. Here, we measure correlations in the outcomes of 18 infection across 45 Drosophilidae host species with four Cripavirus isolates that vary in their 19 evolutionary relatedness. We found positive correlations between every pair of viruses tested, with 20 the strength of correlation tending to decrease with greater evolutionary distance between viruses. 21 These results suggest that virus evolutionary relatedness can explain variation in the outcome of 22 host shifts and may be a useful proxy for determining the likelihood of novel virus emergence. -
Johnston´S Organ As a Mechanosensory Element for Spatial Orientation in Rhodnius Prolixus
Johnston´s organ as a mechanosensory element for spatial orientation in Rhodnius prolixus Bibiana Ospina-Rozo; Manu Forero-Shelton, Jorge Molina Flagellar antennae in the class Insecta generally bear two basal segments (scape and pedicel) and a segmented flagellum lacking intrinsic muscles (Schneider, 1964). In the non-muscular joint between the pedicel and the flagellum is located the Johnston’s organ (JO). This organ is a chordotonal complex consisting of sub-unities called scolopidia, each one bearing one to three specialized sensory neurons (Yack, 2004). These neurons are capable of detecting the movement of the flagellum, and transducing it into action potentials (Yack, 2004). These two features: the lack of intrinsic muscles beyond the scape and the presence of the JO are considered synapomorphic traits for the class Insecta (Kristensen, 1998; Kristensen, 1981). The Johnston’s organ has been deeply studied in groups of Holometabolous insects, and it has been proven to have many important and diverse functions such as flight control (Sane et al., 2007), near- field hearing (Kamikouchi et al., 2009) and detection of electric fields (Greggers et al., 2013), among others. In holometabolous insects the JO can have variable number of scolopidia. Higher numbers and organization of scolopidia are considered either a strategy to enhance resolution like near-field sound detection in males of Aedes genus with 7000 scolopidia (Boo & Richards, 1975), or a way to ensure various functions as in Drosophila, where the JO consists of 200 scolopidia divided into 5 regions and capable of codifying wind direction, near-field sound and gravity direction (Kamikouchi et al., 2009). -
Computational Models of Proprioception
Available online at www.sciencedirect.com ScienceDirect A leg to stand on: computational models of proprioception 1,4 2,4 Chris J Dallmann , Pierre Karashchuk , 3,5 1,5 Bingni W Brunton and John C Tuthill Dexterous motor control requires feedback from interacts with motor circuits to control the body remains proprioceptors, internal mechanosensory neurons that sense a fundamental problem in neuroscience. the body’s position and movement. An outstanding question in neuroscience is how diverse proprioceptive feedback signals An effective method to investigate the function of sensory contribute to flexible motor control. Genetic tools now enable circuits is to perturb neural activity and measure the targeted recording and perturbation of proprioceptive neurons effect on an animal’s behavior. For example, activating in behaving animals; however, these experiments can be or silencing neurons in the mammalian visual cortex [4] or challenging to interpret, due to the tight coupling of insect optic glomeruli [5] has identified the circuitry and proprioception and motor control. Here, we argue that patterns of activity that underlie visually guided beha- understanding the role of proprioceptive feedback in viors. However, due to the distributed nature of proprio- controlling behavior will be aided by the development of ceptive sensors and their tight coupling with motor con- multiscale models of sensorimotor loops. We review current trol circuits, perturbations to the proprioceptive system phenomenological and structural models for proprioceptor can be difficult to execute and tricky to interpret. encoding and discuss how they may be integrated with existing models of posture, movement, and body state estimation. Mechanical perturbation experiments Early efforts to understand the behavioral contributions Addresses 1 of proprioceptive feedback relied on lesions and mechan- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA ical perturbations. -
Sound Radiation by the Bladder Cicada Cystosoma Saundersii
The Journal of Experimental Biology 201, 701–715 (1998) 701 Printed in Great Britain © The Company of Biologists Limited 1998 JEB1166 SOUND RADIATION BY THE BLADDER CICADA CYSTOSOMA SAUNDERSII H. C. BENNET-CLARK1,* AND D. YOUNG2 1Department of Zoology, Oxford University, South Parks Road, Oxford, OX1 3PS, UK and 2Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia *e-mail: [email protected] Accepted 26 November 1997: published on WWW 5 February 1998 Summary Male Cystosoma saundersii have a distended thin-walled air sac volume was the major compliant element in the abdomen which is driven by the paired tymbals during resonant system. Increasing the mass of tergite 4 and sound production. The insect extends the abdomen from a sternites 4–6 also reduced the resonant frequency of the rest length of 32–34 mm to a length of 39–42 mm while abdomen. By extrapolation, it was shown that the effective singing. This is accomplished through specialised mass of tergites 3–5 was between 13 and 30 mg and that the apodemes at the anterior ends of abdominal segments 4–7, resonant frequency was proportional to 1/√(total mass), which cause each of these intersegmental membranes to suggesting that the masses of the tergal sound-radiating unfold by approximately 2 mm. areas were major elements in the resonant system. The calling song frequency is approximately 850 Hz. The The tymbal ribs buckle in sequence from posterior (rib song pulses have a bimodal envelope and a duration of 1) to anterior, producing a series of sound pulses. -
Social Context Modulates Idiosyncrasy of Behaviour in the Gregarious Cockroach Blaberus Discoidalis
bioRxiv preprint doi: https://doi.org/10.1101/028571; this version posted October 8, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Crall, Souffrant, Akandwanaho & Hescock, et al. 2015 – preprint version Social context modulates idiosyncrasy of behaviour in the gregarious cockroach Blaberus discoidalis James D. Crall1,2,*, André D. Souffrant1,*, Dominic Akandwanaho1,*, Sawyer D. Hescock1,*, Sarah E. Callan1,†, W. Melissa Coronado1,†, Maude W. Baldwin1, Benjamin L. de Bivort1,3,‡ 1 – Dept. of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA. 2 – Concord Field Station, Harvard University, Bedford, MA 01730, USA. 3 – Center for Brain Science, Harvard University, Cambridge, MA 02138, USA. * These authors contributed equally. † These authors contributed equally. ‡ Corresponding author: [email protected] Abstract Individuals are different, but they can work together to perform adaptive collective behaviours. Despite emerging evidence that individual variation strongly affects group performance, it is less clear to what extent individual variation is modulated by participation in collective behaviour. We examined light avoidance (negative phototaxis) in the gregarious cockroach Blaberus discoidalis, in both solitary and group contexts. Cockroaches in groups exhibit idiosyncratic light-avoidance performance that persists across days, with some individual cockroaches avoiding a light stimulus 75% of the time, and others avoiding the light just above chance (i.e. ~50% of the time). These individual differences are robust to group composition. Surprisingly, these differences do not persist when individuals are tested in isolation, but return when testing is once again done with groups.