Autosomal Recessive Coding Variants Explain Only a Small Proportion of Undiagnosed Developmental Disorders in the British Isles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo)
animals Article Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo) Kyu-Sang Lim 1 , Sun-Sik Chang 2, Bong-Hwan Choi 3, Seung-Hwan Lee 4, Kyung-Tai Lee 3 , Han-Ha Chai 3, Jong-Eun Park 3 , Woncheoul Park 3 and Dajeong Lim 3,* 1 Department of Animal Science, Iowa State University, Ames, IA 50011, USA; [email protected] 2 Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea; [email protected] 3 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; [email protected] (B.-H.C.); [email protected] (K.-T.L.); [email protected] (H.-H.C.); [email protected] (J.-E.P.); [email protected] (W.P.) 4 Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea; [email protected] * Correspondence: [email protected] Received: 26 July 2019; Accepted: 23 September 2019; Published: 26 September 2019 Simple Summary: Allele-specific expression (ASE) is the biased allelic expression of genetic variants within the gene. Recently, the next-generation sequencing (NGS) technologies allowed us to detect ASE genes at a transcriptome-wide level. It is essential for the understanding of animal development, cellular programming, and the effect on their complexity because ASE shows developmental, tissue, or species-specific patterns. However, these aspects of ASE still have not been annotated well in farm animals and most studies were conducted mainly at the fetal stages. Hence, the current study focuses on detecting ASE genes in 17 tissues in adult cattle. -
Genome Analysis and Knowledge
Dahary et al. BMC Medical Genomics (2019) 12:200 https://doi.org/10.1186/s12920-019-0647-8 SOFTWARE Open Access Genome analysis and knowledge-driven variant interpretation with TGex Dvir Dahary1*, Yaron Golan1, Yaron Mazor1, Ofer Zelig1, Ruth Barshir2, Michal Twik2, Tsippi Iny Stein2, Guy Rosner3,4, Revital Kariv3,4, Fei Chen5, Qiang Zhang5, Yiping Shen5,6,7, Marilyn Safran2, Doron Lancet2* and Simon Fishilevich2* Abstract Background: The clinical genetics revolution ushers in great opportunities, accompanied by significant challenges. The fundamental mission in clinical genetics is to analyze genomes, and to identify the most relevant genetic variations underlying a patient’s phenotypes and symptoms. The adoption of Whole Genome Sequencing requires novel capacities for interpretation of non-coding variants. Results: We present TGex, the Translational Genomics expert, a novel genome variation analysis and interpretation platform, with remarkable exome analysis capacities and a pioneering approach of non-coding variants interpretation. TGex’s main strength is combining state-of-the-art variant filtering with knowledge-driven analysis made possible by VarElect, our highly effective gene-phenotype interpretation tool. VarElect leverages the widely used GeneCards knowledgebase, which integrates information from > 150 automatically-mined data sources. Access to such a comprehensive data compendium also facilitates TGex’s broad variant annotation, supporting evidence exploration, and decision making. TGex has an interactive, user-friendly, and easy adaptive interface, ACMG compliance, and an automated reporting system. Beyond comprehensive whole exome sequence capabilities, TGex encompasses innovative non-coding variants interpretation, towards the goal of maximal exploitation of whole genome sequence analyses in the clinical genetics practice. This is enabled by GeneCards’ recently developed GeneHancer, a novel integrative and fully annotated database of human enhancers and promoters. -
Anti- Histone-H3 Antibody
anti- Histone-H3 antibody Product Information Catalog No.: FNab03890 Size: 100μg Form: liquid Purification: Immunogen affinity purified Purity: ≥95% as determined by SDS-PAGE Host: Rabbit Clonality: polyclonal Clone ID: None IsoType: IgG Storage: PBS with 0.02% sodium azide and 50% glycerol pH 7.3, -20℃ for 12 months (Avoid repeated freeze / thaw cycles.) Background HIST2H3A,histone cluster 2, H3a.It is the core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. HIST2H3A is Expressed during S phase, then expression strongly decreases as cell division slows down during the process of differentiation. Immunogen information Immunogen: histone cluster 2, H3a Synonyms: H3/n, H3/o, H3F2, H3FM, HIST2H3A, HIST2H3C, HIST2H3D, histone cluster 2, H3a, Histone H3, Histone H3.2, Histone H3/m, Histone H3/o Observed MW: 15-17 kDa Uniprot ID : Q71DI3 Application 1 Wuhan Fine Biotech Co., Ltd. B9 Bld, High-Tech Medical Devices Park, No. 818 Gaoxin Ave.East Lake High-Tech Development Zone.Wuhan, Hubei, China(430206) Tel :( 0086)027-87384275 Fax: (0086)027-87800889 www.fn-test.com Reactivity: Human, Mouse, Rat Tested Application: ELISA, WB, IHC, IF Recommended dilution: WB: 1:500-1:5000; IHC: 1:50-1:200; IF: 1:20-1:200 Image: Immunohistochemistry of paraffin-embedded human breast cancer tissue slide using FNab03890(Histone-H3 Antibody) at dilution of 1:50 Immunofluorescent analysis of HEK-293 cells using FNab03890 (Histone-H3 Antibody) at dilution of 1:50 and Rhodamine-Goat anti-Rabbit IgG 2 Wuhan Fine Biotech Co., Ltd. -
Congenital Disorders of Glycosylation from a Neurological Perspective
brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations -
A Novel Frameshift Pathogenic Variant in ST3GAL5 Causing Salt
www.nature.com/hgv DATA REPORT OPEN A novel frameshift pathogenic variant in ST3GAL5 causing salt and pepper developmental regression syndrome (SPDRS): A case report 1,2 3 2,3 4 fi4 4 Jamal Manoochehri , Seyed Alireza Dastgheib , Hossein Jafari Khamirani , Maryam Mollaie , Zahra Shari , Sina Zoghi✉ , Seyed Mohammad Bagher Tabei3,5, Sanaz Mohammadi2, Fatemeh Dehghanian2, Zahra Farbod2 and Mehdi Dianatpour3,6 © The Author(s) 2021 GM3 synthase deficiency is associated with salt and pepper developmental regression syndrome (SPDRS), a rare genetic disorder. Herein, we report the first Iranian patient with SPDRS. We detected a novel pathogenic variant of ST3GAL5 (NM_003896.4: c.1030_1031del, p.Ile344Cysfs*11). The proband had intellectual disability (ID), failure to thrive, cerebral atrophy, microcephaly, and atonic seizures. The main future challenge proceeding from the results of this study is the prenatal detection of the newly discovered variant; the next step would involve further studies to elucidate the phenotypic spectrum of SPDRS and detect new variants that could cause symptoms ranging from mild to severe. Human Genome Variation; https://doi.org/10.1038/s41439-021-00164-8 GM3 synthase is the first enzyme involved in the biosynthesis of a- occurrence of a set of complications and poor adherence by the and b-series gangliosides. Pathogenic variants in ST3GAL5 that family. Afterward, the dietary interventions were resumed. result in a complete lack of GM3 activity lead to the elimination of The first symptoms were recorded during the first 2 months of all of its downstream biosynthesis products. SPDRS, a rare life, primarily comprising irritability, poor feeding, and failure to neurological disorder caused by GM3 synthase deficiency, leads thrive. -
Protein Interactions in the Cancer Proteome† Cite This: Mol
Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG. -
Pentosan Polysulfate Binds to STRO
Wu et al. Stem Cell Research & Therapy (2017) 8:278 DOI 10.1186/s13287-017-0723-y RESEARCH Open Access Pentosan polysulfate binds to STRO-1+ mesenchymal progenitor cells, is internalized, and modifies gene expression: a novel approach of pre-programing stem cells for therapeutic application requiring their chondrogenesis Jiehua Wu1,7, Susan Shimmon1,8, Sharon Paton2, Christopher Daly3,4,5, Tony Goldschlager3,4,5, Stan Gronthos6, Andrew C. W. Zannettino2 and Peter Ghosh1,5* Abstract Background: The pharmaceutical agent pentosan polysulfate (PPS) is known to induce proliferation and chondrogenesis of mesenchymal progenitor cells (MPCs) in vitro and in vivo. However, the mechanism(s) of action of PPS in mediating these effects remains unresolved. In the present report we address this issue by investigating the binding and uptake of PPS by MPCs and monitoring gene expression and proteoglycan biosynthesis before and after the cells had been exposed to limited concentrations of PPS and then re-established in culture in the absence of the drug (MPC priming). Methods: Immuno-selected STRO-1+ mesenchymal progenitor stem cells (MPCs) were prepared from human bone marrow aspirates and established in culture. The kinetics of uptake, shedding, and internalization of PPS by MPCs was determined by monitoring the concentration-dependent loss of PPS media concentrations using an enzyme-linked immunosorbent assay (ELISA) and the uptake of fluorescein isothiocyanate (FITC)-labelled PPS by MPCs. The proliferation of MPCs, following pre-incubation and removal of PPS (priming), was assessed using the Wst-8 assay 35 method, and proteoglycan synthesis was determined by the incorporation of SO4 into their sulphated glycosaminoglycans. -
Human Lectins, Their Carbohydrate Affinities and Where to Find Them
biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body. -
BMC Cell Biology Biomed Central
BMC Cell Biology BioMed Central Research article Open Access MAB21L2, a vertebrate member of the Male-abnormal 21 family, modulates BMP signaling and interacts with SMAD1 Danila Baldessari†1, Aurora Badaloni†1,2, Renato Longhi4, Vincenzo Zappavigna3 and G Giacomo Consalez*1,2 Address: 1Dept. Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy, 2Stem Cell Research Institute, San Raffaele Scientific Institute, 20132 Milan, Italy, 3Dept. Molecular Biology and Functional Genomics, San Raffaele Scientific Institute, 20132 Milan, Italy and 4National Research Center, Institute of Chemistry of Molecular Recognition, 20131 Milan, Italy Email: Danila Baldessari - [email protected]; Aurora Badaloni - [email protected]; Renato Longhi - [email protected]; Vincenzo Zappavigna - [email protected]; G Giacomo Consalez* - [email protected] * Corresponding author †Equal contributors Published: 21 December 2004 Received: 28 August 2004 Accepted: 21 December 2004 BMC Cell Biology 2004, 5:48 doi:10.1186/1471-2121-5-48 This article is available from: http://www.biomedcentral.com/1471-2121/5/48 © 2004 Baldessari et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Through in vivo loss-of-function studies, vertebrate members of the Male abnormal 21 (mab-21) gene family have been implicated in gastrulation, neural tube formation and eye morphogenesis. Despite mounting evidence of their considerable importance in development, the biochemical properties and nature of MAB-21 proteins have remained strikingly elusive. -
The Bio Revolution: Innovations Transforming and Our Societies, Economies, Lives
The Bio Revolution: Innovations transforming economies, societies, and our lives economies, societies, our and transforming Innovations Revolution: Bio The The Bio Revolution Innovations transforming economies, societies, and our lives May 2020 McKinsey Global Institute Since its founding in 1990, the McKinsey Global Institute (MGI) has sought to develop a deeper understanding of the evolving global economy. As the business and economics research arm of McKinsey & Company, MGI aims to help leaders in the commercial, public, and social sectors understand trends and forces shaping the global economy. MGI research combines the disciplines of economics and management, employing the analytical tools of economics with the insights of business leaders. Our “micro-to-macro” methodology examines microeconomic industry trends to better understand the broad macroeconomic forces affecting business strategy and public policy. MGI’s in-depth reports have covered more than 20 countries and 30 industries. Current research focuses on six themes: productivity and growth, natural resources, labor markets, the evolution of global financial markets, the economic impact of technology and innovation, and urbanization. Recent reports have assessed the digital economy, the impact of AI and automation on employment, physical climate risk, income inequal ity, the productivity puzzle, the economic benefits of tackling gender inequality, a new era of global competition, Chinese innovation, and digital and financial globalization. MGI is led by three McKinsey & Company senior partners: co-chairs James Manyika and Sven Smit, and director Jonathan Woetzel. Michael Chui, Susan Lund, Anu Madgavkar, Jan Mischke, Sree Ramaswamy, Jaana Remes, Jeongmin Seong, and Tilman Tacke are MGI partners, and Mekala Krishnan is an MGI senior fellow. -
GM3 Synthase Deficiency
GM3 synthase deficiency Description GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first few weeks after birth, affected infants become irritable and develop feeding difficulties and vomiting that prevent them from growing and gaining weight at the usual rate. Seizures begin within the first year of life and worsen over time. Multiple types of seizures are possible, including generalized tonic-clonic seizures (also known as grand mal seizures), which cause muscle rigidity, convulsions, and loss of consciousness. Some affected children also experience prolonged episodes of seizure activity called nonconvulsive status epilepticus. The seizures associated with GM3 synthase deficiency tend to be resistant (refractory) to treatment with antiseizure medications. GM3 synthase deficiency profoundly disrupts brain development. Most affected children have severe intellectual disability and do not develop skills such as reaching for objects, speaking, sitting without support, or walking. Some have involuntary twisting or jerking movements of the arms that are described as choreoathetoid. Although affected infants can likely see and hear at birth, vision and hearing become impaired as the disease worsens. It is unknown how long people with GM3 synthase deficiency usually survive. Some affected individuals have changes in skin coloring (pigmentation), including dark freckle-like spots on the arms and legs and light patches on the arms, legs, and face. These changes appear in childhood and may become more or less apparent over time. The skin changes do not cause any symptoms, but they can help doctors diagnose GM3 synthase deficiency in children who also have seizures and delayed development. -
Bovine NK-Lysin: Copy Number Variation and PNAS PLUS Functional Diversification
Bovine NK-lysin: Copy number variation and PNAS PLUS functional diversification Junfeng Chena, John Huddlestonb,c, Reuben M. Buckleyd, Maika Maligb, Sara D. Lawhona, Loren C. Skowe, Mi Ok Leea, Evan E. Eichlerb,c, Leif Anderssone,f,g, and James E. Womacka,1 aDepartment of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; bDepartment of Genome Sciences, University of Washington, Seattle, WA 98195; cHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195; dSchool of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843; fDepartment of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75123, Sweden; and gDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, SE 75007, Sweden Contributed by James E. Womack, November 20, 2015 (sent for review November 5, 2015; reviewed by Denis M. Larkin and Harris A. Lewin) NK-lysin is an antimicrobial peptide and effector protein in the host compared with humans and mice. These include genes coding innate immune system. It is coded by a single gene in humans and AMPs such as the cathelicidins and β-defensins, members of most other mammalian species. In this study, we provide evidence the IFN gene family, C-type lysozyme, and lipopolysaccharide- for the existence of four NK-lysin genes in a repetitive region on binding protein (ULBP) (23–28). Expansion of these gene fam- cattle chromosome 11. The NK2A, NK2B,andNK2C genes are tan- ilies potentially can give rise to new functional paralogs with demly arrayed as three copies in ∼30–35-kb segments, located implications in the unique gastric physiology of ruminants or in 41.8 kb upstream of NK1.