Two Types of Delayed Post-Traumatic Intracerebral Hematoma

Total Page:16

File Type:pdf, Size:1020Kb

Two Types of Delayed Post-Traumatic Intracerebral Hematoma Two Types of Delayed Post-Traumatic Intracerebral Hematoma Takashi TSUBOKAWA Department of Neurological Surgery, Nihon University School of Medicine, Tokyo 173 Summary The findings of repeated CT scans, clinicalcourses and pathologicalstudies in 28 cases of delayed post-traumatic intracerebral hematoma were studied retrospectivelyto elucidate the mechanism of bleeding and to establish adequate treatment. Based on the results obtained, it became clear that there are two types of delayed hematoma. In 10 of the 28 cases, initial CT findings within 6 hours after head injury revealed cerebral contusion or hemorrhagic contusion, and spots of high density scattered in the low density zone gradually became confluent to form an irregularly shaped hematoma according to follow-up CT findings. This was termed "hematoma within a contusional area." In 15 of the 28 cases, initial CT findings within 6 hours after head injury revealed no abnormal density within the brain and the hematoma appeared suddenly 3 6 days after the injury. In eight of the 15 cases, emergency surgery was performed for the removal of epidural or subdural hematoma. This type of hematoma is termed "contusional hem atoma" and constitutes the second group. In three of the 28 cases, both types of hematoma were observed. Based on histological findings for the two types of delayed hematoma. The first group may be induced by an anoxic vasodilation mechanism (Evans et al.9)), while the second group may be derived from a different mechanism related to ishemic changes and the free radical reaction caused by the reflow phenomenon (Tsubokawa et al.14-16)1 It is important to establish correct diagnoses 1for delayed hematomas based on differences between follow-up findings of repeated CT and an initial CT performed within 6 hours after head injury since the operative indications and operative results for the two groups are different as indicated by our 28 cases. Key words: Head injury, repeated CT, contusion, delayed hematoma occurring immediately after trauma but with Introduction no typical posttraumatic apoplexy-like symp toms (Bollinger4), and has accounted for Delayed intracerebral hematoma following more than 50 % of traumatic intracerebral head injury is characterized by the appearance hematomas since CT was introduced in this of focal neurological signs or depression of particular field of diagnostics, computerized the level of consciousness, developing days or tomographic scanning (CT) is now the key weeks after the trauma. Prompt diagnosis diagnostic tool for this condition. However, and a decision concerning indication for even with CT it is difficult to make a correct surgery are necessary to minimize the harmful diagnosisof a delayed post-traumatic intracere effects that the hematoma may exert on the bral hematoma, to determine its exact patho already traumatized brain. genetic mechanism and to decide on the Because delayed traumatic intracerebral hem indication for surgery unless CT studies are atoma occurs in cases of severe head injury begun early after head injury and repeated is associated with focal neurological signs and until a hematoma of demonstrable size is depression of the level of consciousness formed (Tsubokawa et al. 14-16)) We reported previously that intracerebral after injury and diagnosis of delayed traumatic hematomas which, although not demonstrable intracerebral hematoma was ultimately estab in initial CT performed within 6 hours after lished by operation or autopsy were selected head injury, appear in repeated CT on 1 to 5 for the study (Table 1). days later can be classified into two types. One type includes those hematomas formed Results within a contused area which show evidence of cerebral contusion or hemorrhagic contusion in initial CT and are formed by the gradual I. Development and course of the two types of confluence of small hemorrhagic areas. The hematoma other type consists of those contusional hema In 10 of these 28 cases there was initial CT tomas which are not demonstrable, with no evidence of cerebral contusion or hemorrhagic evidence of contusion (Lanksch et al.101), in contusion, and a typical finding of multiple initial CT but appear within a normal brain punctiform or patchy areas of minor bleeding area later between 8 hours and 6 days after appearing in low density areas within 6 hours injury. after injury. These CT findings correspond The purpose of the present study was to respectively to Type I and Type II cerebral explore the possibility that these two types contusions according to the classification of of intracerebral hematomas are dissimilar Lanksch et al. Four of the 10 cases had an with respect to the mechanism of bleeding extracerebral hematoma, i.e., two with subdural and hence should be treated in a different way, hemorrhage and the other two with small based on CT findings, clinical courses and epidural hematomas at the fracture line. operative results obtained in our own series In all cases of Type I cerebral contusion of 28 cases of delayed traumatic intracerebral showing low density only in initial CT, the hematoma, and thereby to assess the clinical lesion developed into a hemorrhagic contusion value of the above classification. (Lanksch Type II10)) within 24 hours. By the third day of injury, these spots of bleeding Subjects gradually became confluent to form an ir regularly shaped hematoma (diameter of high From among the head injury cases seen at our density area exceeding 3 cm) which occupied hospital after the introduction of CT, 28 cases part of the initial low density area (Fig. 1). in which initial CT was nerformed 6 hours These hematomas are termed hematomas Table 1 Twenty-eight cases of traumatic delayed intracerebral hematoma classified into 2 groups based on CT findings, clinical courses and pathological findings. was performed within 24 hours after injury and four of them underwent additional decom pressive craniectomy. Among seven cases not undergoing emer gency evacuation surgery (three with subdural hematoma and four without extracerebral hematoma), an intracerebral hematoma became demonstrable in repeated CT scans within 24 hours after injury in two cases, within 48 hours in another two cases, and 3 to 5 days after injury in the remaining three cases. Fig. 1 CT scans illustrating the time course of Among eight cases in which an intracerebral delayed posttraumatic intracerebral hematoma hematoma developed after surgical removal (hematoma within a contusional area). A : Initial CT 5 hours after head injury. r of an extracerebral hematoma, the intracerebral subdural hemorrhage and 1-temporal contusion hematoma was formed within 4 hours after (Lanksch Type II) are observed. the operation in one case, 1 to 2 days after the B: CT findings 3 days after head injury. An operation in six cases and on the 5th postopera irregularly shaped intracerebral hematoma is tive day in one case. Intracerebral hematomas present in the contusion observed by the initial occurring after surgery for subdural or epidural CT. hematomas were ipsilateral to the preceding extracerebral hematoma in six cases and con within a contusional area since they are formed tralateral in the other two cases. from bleeding spots within a contused brain There were also three cases in the present area as reflected in the findings of repeated series where both a contusional hematoma and CT scans (Tsubokawa et al.14-16)) a hematoma within a contusional area were At the time when the diameter of the hema formed. In these cases, however, there was no toma exceeded 3 cm, shifting of the median concurrent extracerebral hematoma formation. structure was noted in eight of the 10 cases. In these two types of delayed traumatic In the other two cases where a hematoma intracerebral hematoma, impairment of con appeared at the frontal tip bilaterally or in the frontal lobe, no shifting of the median structure was seen. Fifteen of the remaining cases of delayed traumatic intracerebral hematoma had no abnormalities or only showed evidence of subarachnoid or sub or epidural hematoma in CT performed within 8 hours after injury. The appearance of an intracerebral hematoma was recognized in repeated CT performed between 8 hours and 6 days after injury. This type of hematoma differed from hematomas within the contused area in that it did not show any contusion or high density spots in Fig. 2 CT scans illustrating the time course of the brain in initial CT (Fig. 2). It was arbitrarily delayed posttraumatic intracerebral hematoma termed a contusional hematoma (Tsubokawa (contusional hematoma). et al.14-16)) A: Initial CT 8 hours after head injury. There are no visible pathological findings apart from Initial CT scan findings were negative in r-subdural hematoma. This hematoma was re cases of contusional hematoma within 8 hours moved by emergency surgery just after the CT. after injury except in nine cases with concurrent B : CT findings 4 days after emergency cra subdural hematoma and two cases with con niotomy. There is no remaining r-subdural comitant epidural hematoma. In eight out of hematoma, but intracerebral hematoma is 11 case of extracerebral hematoma, evacuation observed in the 1-front-temporal area. sciousness ranging from confusion to a coma, returned to their premorbid life. Of the two anisocoria or impaired light reaction was noted patients treated nonsurgically, one had a in about 20% of the cases and hemiplegia was disability necessitating assistance in daily life present in 30% of the cases. However, no and the other successfully returned to a normal gross alterations of neurological symptoms life (Table 2). were seen to occur coincidentally with the Of the 15 cases of contusional hematoma, development of delayed intracerebral hema two presented brain stem symptoms immedia toma, nor were these instances in which late tely after sustaining injury, while in another apoplectic symptoms according to Bollinger there was confusion at the time of hospitaliza manifested themselves at the time of hematoma tion and a hematoma later developed in the formation.
Recommended publications
  • Diagnoses to Include in the Problem List Whenever Applicable
    Diagnoses to include in the problem list whenever applicable Tips: 1. Always say acute or open when applicable 2. Always relate to the original trauma 3. Always include acid-base abnormalities, AKI due to ATN, sodium/osmolality abnormalities 4. Address in the plan of your note 5. Do NOT say possible, potential, likely… Coders can only use a real diagnosis. Make a real diagnosis. Neurological/Psych: Head: 1. Skull fracture of vault – open vs closed 2. Basilar skull fracture 3. Facial fractures 4. Nerve injury____________ 5. LOC – include duration (max duration needed is >24 hrs) and whether they returned to neurological baseline 6. Concussion with or without return to baseline consciousness 7. DAI/severe concussion with or without return to baseline consciousness 8. Type of traumatic brain injury (hemorrhages and contusions) – include size a. Tiny = <0.6 cm b. Small/moderate = 0.6-1 cm c. Large/extensive = >1 cm 9. Cerebral contusion/hemorrhage 10. Cerebral edema 11. Brainstem compression 12. Anoxic brain injury 13. Seizures 14. Brain death Spine: 1. Cervical spine fracture with (complete or incomplete) or without cord injury 2. Thoracic spine fracture with (complete or incomplete) or without cord injury 3. Lumbar spine fracture with (complete or incomplete) or without cord injury 4. Cord syndromes: central, anterior, or Brown-Sequard 5. Paraplegia or quadriplegia (any deficit in the upper extremity is consistent with quadriplegia) Cardiovascular: 1. Acute systolic heart failure 40 2. Acute diastolic heart failure 3. Chronic systolic heart failure 4. Chronic diastolic heart failure 5. Combined heart failure 6. Cardiac injury or vascular injuries 7.
    [Show full text]
  • Management of the Head Injury Patient
    Management of the Head Injury Patient William Schecter, MD Epidemilogy • 1.6 million head injury patients in the U.S. annually • 250,000 head injury hospital admissions annually • 60,000 deaths • 70-90,000 permanent disability • Estimated cost: $100 billion per year Causes of Brain Injury • Motor Vehicle Accidents • Falls • Anoxic Encephalopathy • Penetrating Trauma • Air Embolus after blast injury • Ischemia • Intracerebral hemorrhage from Htn/aneurysm • Infection • tumor Brain Injury • Primary Brain Injury • Secondary Brain Injury Primary Brain Injury • Focal Brain Injury – Skull Fracture – Epidural Hematoma – Subdural Hematoma – Subarachnoid Hemorrhage – Intracerebral Hematorma – Cerebral Contusion • Diffuse Axonal Injury Fracture at the Base of the Skull Battle’s Sign • Periorbital Hematoma • Battle’s Sign • CSF Rhinorhea • CSF Otorrhea • Hemotympanum • Possible cranial nerve palsy http://health.allrefer.com/pictures-images/ Fracture of maxillary sinus causing CSF Rhinorrhea battles-sign-behind-the-ear.html Skull Fractures Non-depressed vs Depressed Open vs Closed Linear vs Egg Shell Linear and Depressed Normal Depressed http://www.emedicine.com/med/topic2894.htm Temporal Bone Fracture http://www.vh.org/adult/provider/anatomy/ http://www.bartleby.com/107/illus510.html AnatomicVariants/Cardiovascular/Images0300/0386.html Epidural Hematoma http://www.chestjournal.org/cgi/content/full/122/2/699 http://www.bartleby.com/107/illus769.html Epidural Hematoma • Uncommon (<1% of all head injuries, 10% of post traumatic coma patients) • Located
    [Show full text]
  • Sports-Related Concussions: Diagnosis, Complications, and Current Management Strategies
    NEUROSURGICAL FOCUS Neurosurg Focus 40 (4):E5, 2016 Sports-related concussions: diagnosis, complications, and current management strategies Jonathan G. Hobbs, MD,1 Jacob S. Young, BS,1 and Julian E. Bailes, MD2 1Department of Surgery, Section of Neurosurgery, The University of Chicago Pritzker School of Medicine, Chicago; and 2Department of Neurosurgery, NorthShore University HealthSystem, The University of Chicago Pritzker School of Medicine, Evanston, Illinois Sports-related concussions (SRCs) are traumatic events that affect up to 3.8 million athletes per year. The initial diag- nosis and management is often instituted on the field of play by coaches, athletic trainers, and team physicians. SRCs are usually transient episodes of neurological dysfunction following a traumatic impact, with most symptoms resolving in 7–10 days; however, a small percentage of patients will suffer protracted symptoms for years after the event and may develop chronic neurodegenerative disease. Rarely, SRCs are associated with complications, such as skull fractures, epidural or subdural hematomas, and edema requiring neurosurgical evaluation. Current standards of care are based on a paradigm of rest and gradual return to play, with decisions driven by subjective and objective information gleaned from a detailed history and physical examination. Advanced imaging techniques such as functional MRI, and detailed understanding of the complex pathophysiological process underlying SRCs and how they affect the athletes acutely and long-term, may change the way physicians treat athletes who suffer a concussion. It is hoped that these advances will allow a more accurate assessment of when an athlete is truly safe to return to play, decreasing the risk of secondary impact injuries, and provide avenues for therapeutic strategies targeting the complex biochemical cascade that results from a traumatic injury to the brain.
    [Show full text]
  • En 13-Correlation Between.P65
    Morgado FL et al. CorrelaçãoARTIGO entre ORIGINAL a ECG e •achados ORIGINAL de imagem ARTICLE de TC no TCE Correlação entre a escala de coma de Glasgow e os achados de imagem de tomografia computadorizada em pacientes vítimas de traumatismo cranioencefálico* Correlation between the Glasgow Coma Scale and computed tomography imaging findings in patients with traumatic brain injury Fabiana Lenharo Morgado1, Luiz Antônio Rossi2 Resumo Objetivo: Determinar a correlação da escala de coma de Glasgow, fatores causais e de risco, idade, sexo e intubação orotraqueal com os achados tomográficos em pacientes com traumatismo cranioencefálico. Materiais e Métodos: Foi realizado estudo transversal prospectivo de 102 pacientes, atendidos nas primeiras 12 horas, os quais receberam pontuação segundo a escala de coma de Glasgow e foram submetidos a exame tomográfico. Resultados: A idade média dos pacientes foi de 37,77 ± 18,69 anos, com predomínio do sexo masculino (80,4%). As causas foram: acidente automobilístico (52,9%), queda de outro nível (20,6%), atropelamento (10,8%), queda ao solo ou do mesmo nível (7,8%) e agressão (6,9%). No presente estudo, 82,4% dos pacientes apresentaram traumatismo cranioencefálico de classificação leve, 2,0% moderado e 15,6% grave. Foram observadas alterações tomográficas (hematoma subgaleal, fraturas ósseas da calota craniana, hemorragia subaracnoidea, contusão cerebral, coleção sanguínea extra-axial, edema cerebral difuso) em 79,42% dos pacientes. Os achados tomográficos de trauma craniano grave ocorreram em maior número em pacientes acima de 50 anos (93,7%), e neste grupo todos necessitaram de intubação orotraqueal. Con- clusão: Houve significância estatística entre a escala de coma de Glasgow, idade acima de 50 anos (p < 0,0001), necessidade de intubação orotraqueal (p < 0,0001) e os achados tomográficos.
    [Show full text]
  • Traumatic Brain Injury(Tbi)
    TRAUMATIC BRAIN INJURY(TBI) B.K NANDA, LECTURER(PHYSIOTHERAPY) S. K. HALDAR, SR. OCCUPATIONAL THERAPIST CUM JR. LECTURER What is Traumatic Brain injury? Traumatic brain injury is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration impact, blast waves, or penetration by a projectile, leading to temporary or permanent impairment of brain function. Traumatic brain injury (TBI) has a dramatic impact on the health of the nation: it accounts for 15–20% of deaths in people aged 5–35 yr old, and is responsible for 1% of all adult deaths. TBI is a major cause of death and disability worldwide, especially in children and young adults. Males sustain traumatic brain injuries more frequently than do females. Approximately 1.4 million people in the UK suffer a head injury every year, resulting in nearly 150 000 hospital admissions per year. Of these, approximately 3500 patients require admission to ICU. The overall mortality in severe TBI, defined as a post-resuscitation Glasgow Coma Score (GCS) ≤8, is 23%. In addition to the high mortality, approximately 60% of survivors have significant ongoing deficits including cognitive competency, major activity, and leisure and recreation. This has a severe financial, emotional, and social impact on survivors left with lifelong disability and on their families. It is well established that the major determinant of outcome from TBI is the severity of the primary injury, which is irreversible. However, secondary injury, primarily cerebral ischaemia, occurring in the post-injury phase, may be due to intracranial hypertension, systemic hypotension, hypoxia, hyperpyrexia, hypocapnia and hypoglycaemia, all of which have been shown to independently worsen survival after TBI.
    [Show full text]
  • Determination of Prognostic Factors in Cerebral Contusions Serebral Kontüzyonlarda Prognostik Faktörlerin Belirlenmesi
    ORIGINAL RESEARCH Bagcilar Med Bull 2019;4(3):78-85 DO I: 10.4274/BMB.galenos.2019.08.013 Determination of Prognostic Factors in Cerebral Contusions Serebral Kontüzyonlarda Prognostik Faktörlerin Belirlenmesi Neşe Keser1, Murat Servan Döşoğlu2 1University of Health Sciences, Fatih Sultan Mehmet Training and Research Hospital, Clinic of Neurosurgery, İstanbul, Turkey 2İçerenköy Bayındır Hospital, Clinic of Neurosurgery, İstanbul, Turkey Abstract Öz Objective: Cerebral contusion (CC) is vital because it is one of the Amaç: Kontüzyo serebri, en sık karşılaşılan travmatik beyin yaralanması most common traumatic brain injury (TBI) types and can lead to lifelong olması ve ömür boyu süren fiziksel, bilişsel ve psikolojik bozukluklara physical, cognitive, and psychological disorders. As with all other types of yol açabilmesi nedeniyle önem taşımaktadır. Diğer tüm kraniyoserebral craniocerebral trauma, the correlation of prognosis with specific criteria travma tiplerinde olduğu gibi kontüzyon serebride de prognozun belli in CC can provide more effective treatment methods with objective kriterlere bağlanması objektif yaklaşımlarla vakit geçirmeden daha efektif approaches. tedavi yöntemlerinin belirlenmesini sağlayabilir. Method: The results of 105 patients who were hospitalized in the Yöntem: Acil poliklinikte kontüzyon serebri saptanılarak yatırılan, emergency clinic with the diagnosis of CC and whose lesion did not lezyonu cerrahi müdahale gerektirmeyen 105 olgu araştırıldı. Demografik require surgical intervention were evaluated. The demographic variables, değişkenler, Glasgow koma skalası (GKS) skoru, radyografik bulgular, Glasgow coma scale (GCS) score, radiographic findings, coexisting eşlik eden travmalar, kraniyal bilgisayarlı tomografide (BT) saptanılan traumas and, type, number, and the midline shift of the contusions kontüzyonların tipi, sayısı, ile oluşturduğu orta hat şiftine göre sonuçları detected in computerized tomography (CT) were evaluated as a guide in bir aylık dönemde prognoz tayininde yol gösterici olarak değerlendirildi.
    [Show full text]
  • The Relationship Between Cerebral Salt Wasting Syndrome and Clinical
    ORIGINAL ARTICLE Bali Medical Journal (Bali Med J) 2020, Volume 9, Number 2: 489-492 P-ISSN.2089-1180, E-ISSN.2302-2914 The relationship between cerebral salt wasting ORIGINAL ARTICLE syndrome and clinical outcome in severe and moderate traumatic brain injury patient at Sanglah Published by DiscoverSys CrossMark Doi: http://dx.doi.org/10.15562/bmj.v9i2.1774 Hospital, Bali, Indonesia Nyoman Golden,1* Jeffrey Ariesta Putra,2 Wayan Niryana,1 Putu Eka Mardhika1 Volume No.: 9 ABSTRACT Issue: 2 Introduction: Intracranial and extracranial factors causing secondary injury. The relationship between variables was analyzed and using Traumatic Brain Injury (TBI) are the primary targets for medical Chi-square analysis. Data were analyzed using SPSS version 23 for intervention and preventing brain damage. One of the extracranial Windows. factors that worsen the prognosis of TBI is Cerebral Salt Wasting Results: Most of respondents are male (83.3%), severe head injury First page No.: 489 (CSW) syndrome. There are only a few articles that report CSW in TBI (73.3%), mild hyponatremia (90.0%), and negative fluid balance patients, and no studies are describing the relationship between CSW (100.0%) in CSW (+) group (Table 1). However, in CSW (-) group, and clinical outcome of head injury. This study aimed to determine the most of respondents are male (70.0%), moderate head injury (85.0%), P-ISSN.2089-1180 relationship between CSW and clinical outcome of TBI patients. normal serum natrium (80.0%), and positive fluid balance (60.0%). Methods: This was a prospective cohort study conducted from CSW increased the risk of unfavorable outcomes, 5.7 times in moderate October 2018 to May 2019.
    [Show full text]
  • Firework Discharge Leading to Cerebral Contusion and Motor Paraplegia
    Case Report Trauma 2021. Vol. 23(2) I48-IS2 © The Author(s) 2020 Firework discharge leading to cerebral Article reuse guidelines; sagepub.com/journals-permissions contusion and motor paraplegia DOI: 10.1177/1460408620943487 journals.sagepub.com/home/tra ®SAGE Matthew Zeller' - ), Paul Bluhm' Marika Gassner'*^©, Vivlane Ugalde^ :, Travis Abele'* iy and Mary Condron''^'® Abstract A 57-year-old male sustained a blunt head injury after discharging a mortar firework off the vertex of his head. Physical examination revealed a stellate scalp lesion and pure bilateral leg paraplegia. Initial spinal computed tomography and magnetic resonance imaging were negative for pathology. Initial head computed tomography revealed open, nondisplaced, frontal, and parietal skull fractures with underlying subdural and subarachnoid hemorrhage. Follow-up magnetic resonance imaging one week later showed bilateral precentra! gyri frontal lobe contusions involving the lower extremity motor cortices and subcorcical white matter extending anteriorly into the region of the supplementary motor areas. The patient's complete paraplegia informed the subsequent hospital rehabilitation. However, motor recovery was more rapid than anticipated, with die patient regaining ambulatory function before inpatient rehabilitation discharge after 27 days of hospitalization. He continued to have issues with spasticity after discharge. We discuss the current literature surrounding paraplegia secondary to head trauma and the recovery that follows. Firework misuse is a known cause of head injury but has not been recorded as a cause of isolated bilateral paraplegia. Isolated precentral gyri contusion must be considered in patients presenting with paraplegia following trauma to the vertex of the head and normal spinal imaging. We show the importance of repeat imaging to follow the evolving nature of traumatic head injuries presenting with paraplegia.
    [Show full text]
  • Changing Attitudes to the Management of Severe Head Injuries*
    1234 BRITISH MEDICAL JOURNAL 20 NOVEMBER 1976 MEDICAL PRACTICE Occasional Revziezv Changing attitudes to the management of severe head injuries* WALPOLE LEWIN British Medical Journal, 1976, 2, 1234-1239 centre function; thus death could frequently be prevented by artificial respiration.26 Just 100 years ago this term young Victor Horsley entered London, as a medical student. He was a University College, Head injury. A dynamic problem founder of British neurosurgery. Some of his other interests have a contemporary ring. Thus he helped to provide the pathological This emphasis on the role of an impeccable airway was revived proof of an outbreak of rabies among the deer in Richmond in the early years after the second world war, dramatically Park in 1888, while his friendship with Pasteur and his vigorous demonstrated by the introduction of tracheostomy for some of advocacy led to the muzzling of dogs and finally the quarantine these patients. restrictions which helped stamp out the disease from Britain at The fall in mortality rate, and the longer survival for other that time. We find him in 19121 reporting on the forcible feeding severely injured patients that followed these and other measures, of suffrage prisoners and urging its reconsideration, echoed in led to a more critical examination of the clinical and pathological October 1975 by the World Medical Association in the "Dec- correlates of head injury. Several secondary changes-the laration of Tokyo," which set out the role of the doctor in so-called "second head injury"-which might be set in motion relation to these and other practices in a manner which I believe after injury were identified, while the recognition of major Sir Victor would have approved.
    [Show full text]
  • Of Ce'rebral Daimiage in Petechial Haemorrhage, Ofteni
    NOV. 10 Tim Damsm Nov. 10, 1928719281 CEREBRAL STATES C&NSEQUENTCaNSEQUENT T-PONUPON -READHEAD INJURIES. rI MXDICALMunicanjouwu*zJOUPWAZ .29an petechial haemorrhage, ofteni -with maximal intensity at the point of contrecoup. In suich a case death has probably been due to direct or indir-ect damage to the mcedulla. ON In patients wiho recover witlh symptoms of cerebral damage THE DIFFERENTIAL DIAGNOSIS AND TREATMENT we may reasonably suippose that some lesser degree of OF CEREBRAL STATES CONSEQUENT such brulisinig is pseseiit. UPON HEAD INJURIES.'* Tle symptoms of cerebral contusion depend upon two factors: first, the effect uponi the intracranial ppressure, BY and secondly, the precise situation of the lesion. To take C. P. SYMONDS, M.D., F.R.C.P., the latter first, it is clear that the presence of paralysis, Physician in C-harge of Department for Nervous Diseases, loss of sensation, or altered reflexes in a case of cerebral Guy's Hospital; Assistant Physician, National contusion mIlUst be an accident of localization. If the Hospital, Queeni Square. lesion involves the pyramidal cells or fibres an extensor plani-tar lresponse wrill result, and so on. The focal signs TIE subject of lhead injuries is treated, as a rule, in the of cerebral contusion, therefore, are those of cerebral textbooks of surgery rather than of medicine. It might disease generally. It may, however, be remarked at once seem, therefore, that in choosing it for our discussion we that such focal signs are rarely to be detected, possibly were encroaching upon surgical -preserves. In practice, hiowever, the which because it is only in the relatively slight cases of contusion proportion of cases of head injury that recovery is possible.
    [Show full text]
  • Early Indicators of Prognosis in Severe Traumatic Brain Injury
    EARLY INDICATORS OF PROGNOSIS IN SEVERE TRAUMATIC BRAIN INJURY Table of Contents I. Introduction...................................................................................................157 II. Methodology.................................................................................................160 III. Glasgow Coma Scale Score..........................................................................163 IV. Age................................................................................................................174 V. Pupillary Diameter & Light Reflex...............................................................186 VI. Hypotension ..................................................................................................199 VII. CT Scan Features ..........................................................................................207 153 154 EARLY INDICATORS OF PROGNOSIS in Severe Traumatic Brain Injury Authors: Randall M. Chesnut, M.D. Associate Professor of Neurosurgery Oregon Health Sciences University Jamshid Ghajar, M.D. Clinical Associate Professor of Neurosurgery Cornell University Medical College Andrew I.R. Maas, M.D. Associate Professor of Neurosurgery University Hospital Rotterdam, The Netherlands Donald W. Marion, M.D. Professor of Neurosurgery University of Pittsburgh Medical Center Franco Servadei, M.D. Associate Professor of Neurosurgery Ospedale M Bufalini, Cesena, Italy Graham M. Teasdale, M.D. Professor of Neurosurgery The Southern General Hospital, Glasgow, Scotland Andreas Unterberg,
    [Show full text]
  • Traumatic Brain Injury
    TRAUMATIC BRAIN INJURY PATIENT INFORMATION This resource, developed by neurosurgeons, provides patients and their families trustworthy information on neurosurgical conditions and treatments. For more patient resources from the American Association of Neurological Surgeons (AANS), visit www.aans.org/Patients. Traumatic Brain Injury | American Association of Neurological Surgeons A traumatic brain injury (TBI) is defined as a blow to the head or a penetrating head injury that disrupts the normal function of the brain. TBI can result when the head suddenly and violently hits an object or when an object pierces the skull and enters brain tissue. Symptoms of a TBI can be mild, moderate or severe, depending on the extent of damage to the brain. Mild cases may result in a brief change in mental state or consciousness, while severe cases may result in extended periods of unconsciousness, coma or even death. Prevalence About 1.7 million cases of TBI occur in the U.S. every year. Approximately 5.3 million people live with a disability caused by TBI in the U.S. alone. Incidence and Demographics ● Annual direct and indirect TBI costs are estimated at $48-56 billion. ● There are about 235,000 hospitalizations for TBI every year, which is more than 20 times the number of hospitalizations for spinal cord injury. ● Among children ages 14 and younger, TBI accounts for an estimated 2,685 deaths, 37,000 hospitalizations and 435,000 emergency room visits. ● Every year, 80,000-90,000 people experience the onset of long-term or lifelong disabilities associated with TBI. ● Males represent 78.8 percent of all reported TBI accidents and females represent 21.2 percent.
    [Show full text]