Extending Hardware Based Mandatory Access Controls to Multicore Architectures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formal Aspects of Mobile Code Security
FORMAL ASPECTS OF MOBILE CODE SECURITY RICHARD DREWS DEAN ADISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF COMPUTER SCIENCE JANUARY 1999 c Copyright by Richard Drews Dean, 1998. All Rights Reserved Abstract We believe that formal methods of all kinds are critical to mobile code security, as one route to gaining the assurance level necessary for running potentially hos- tile code on a routine basis. We begin by examining Java, and understanding the weaknesses in its architecture, on both design and implementation levels. Iden- tifying dynamic linking as a key problem, we produce a formal model of linking, and prove desirable properties about our model. This investigation leads to a deep understanding of the underlying problem. Finally, we turn our attention to crypto- graphic hash functions, and their analysis with binary decision diagrams (BDDs). We show that three commonly used hash functions (MD4, MD5, and SHA-1) do not offer ideal strength against second preimages. The ability of a cryptographic hash function to resist the finding of second preimages is critical for its use in digi- tal signature schemes: a second preimage enables the forgery of digital signatures, which would undermine confidence in digitally signed mobile code. Our results show that modern theorem provers and BDD-based reasoning tools are effective for reasoning about some of the key problems facing mobile code security today. iii Acknowledgments My advisor, Andrew Appel, offered sure guidance through what turned out to be an exceptionally smooth journey through graduate school. -
Intermediate X86 Part 2
Intermediate x86 Part 2 Xeno Kovah – 2010 xkovah at gmail All materials are licensed under a Creative Commons “Share Alike” license. • http://creativecommons.org/licenses/by-sa/3.0/ 2 Paging • Previously we discussed how segmentation translates a logical address (segment selector + offset) into a 32 bit linear address. • When paging is disabled, linear addresses map 1:1 to physical addresses. • When paging is enabled, a linear address must be translated to determine the physical address it corresponds to. • It’s called “paging” because physical memory is divided into fixed size chunks called pages. • The analogy is to books in a library. When you need to find some information first you go to the library where you look up the relevant book, then you select the book and look up a specific page, from there you maybe look for a specific specific sentence …or “word”? ;) • The internets ruined the analogy! 3 Notes and Terminology • All of the figures or references to the manual in this section refer to the Nov 2008 manual (available in the class materials). This is because I think the manuals <= 2008 organized and presented much clearer than >= 2009 manuals. • When I refer to a “frame” it means “a page- sized chunk of physical memory” • When paging is enabled, a “linear address” is the same thing as a “virtual memory ” “ ” address or virtual address 4 The terrifying truth revealed! And now you knowAHHHHHHHH!!!…the rest of the story.(Nah, Good it’s not so bad day. :)) 5 Virtual Memory • When paging is enabled, the 32 bit linear address space can be mapped to a physical address space less than 32 bits. -
University of the Philippines Manila College of Arts and Sciences Department of Physical Sciences and Mathematics
UNIVERSITY OF THE PHILIPPINES MANILA COLLEGE OF ARTS AND SCIENCES DEPARTMENT OF PHYSICAL SCIENCES AND MATHEMATICS Health Insurance Corporation Customer Relationship Management Tool (HICorpCRM) A special problem in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science Submitted by: Paul John N. Macaraeg June 2015 Permission is given for the following people to have access to this SP: Available to the general public Yes Available only after consultation with author/ SP adviser No Available only to those bound by confidentiality agreement No ACCEPTANCE SHEET The Special Problem entitled “Health Insurance Corporation Customer Relationship Management Tool (HICorpCRM)” prepared and submitted by Paul John N. Macaraeg in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science has been examined and is recommended or acceptance. Ma. Sheila A. Magboo, M.Sc. Adviser EXAMINERS: Approved Disapproved 1. Gregorio B. Baes, Ph.D. 2. Avegail D. Carpio, M.Sc. 3. Perlita E. Gasmen, M.Sc. 4. Richar Bryann L. Chua, M.Sc. 5. Vincent Peter C. Magboo, M.D., M.Sc. 6. Bernie B. Terrado, M.Sc. Accepted and approved as partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science. Ma. Sheila A. Magboo, M.Sc. Marcelina B. Lirazan, Ph.D. Unit Head Chair Mathematical and Computing Sciences Unit Department of Physical Sciences Department of Physical Sciences and Mathematics and Mathematics Alex C. Gonzaga, Ph.D., Dr.Eng. Dean College of Arts and Sciences iii Abstract The health insurance industry is saturated by big companies competing for market share. -
Prezentacja I Zastosowanie Systemu Internetowych Pomiarów Obrazów Fotogrametrycznych
Artur Janowski Zygmunt Paszotta Jakub Szulwic PREZENTACJA I ZASTOSOWANIE SYSTEMU INTERNETOWYCH POMIARÓW OBRAZÓW FOTOGRAMETRYCZNYCH Streszczenie. W referacie zaprezentowane zostają funkcjonujące rozwiązania powstałe w ramach badań i prac doktorskich, a odnoszące się do rozwiązywania zadań fotogrametrii lotniczej w środowisku internetowym. Pierwotny zamysł systemu internetowych pomiarów obrazów fotogrametrycznych (SIPOF) zrodził się w projekcie badawczym prowadzonym w zespole dra hab. Zygmunta Paszotty, prof. UWM, na Uniwersytecie Warmińsko-Mazurskim w Olsztynie. Zasadnicze badania były realizowane w ramach studiów nad rozprawami doktorskimi autorów. Efekty badań zostały wdrożone w formie funkcjonującego systemu umożliwiającego realizację internetowych pomiarów na zdjęciach fotogrametrycznych nazwanego SIPOF. Referat jest skróconym przewodnikiem po systemie; prezentuje jego funkcjonalność oraz przedstawia możliwości wykorzystania w edukacji, nauce i gospodarce. SIPOF był prezentowany w ośrodkach edukacyjno-badawczych w Polsce oraz zagranicą i spotkał się z zainteresowaniem podmiotów gospodarczych. Komercjalizacja pracy naukowej zaowocowała dalszą koncepcją udostępniania fotogrametrycznych opracowań rastrowych jako nośników informacji kartometrycznej dla użytkownika specjalistycznego i masowego. Przedstawienie funkcjonującego systemu internetowych pomiarów fotogrametrycznych opartego przede wszystkim na kliencie informatycznym implementowanym w graficznej przeglądarce internetowej stanowi tło dla oczekiwań , jakie pokładane są przez użytkownika -
Multiprocessing Contents
Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References ............................................. -
Migrating from Java Applets to Plugin-Free Java Technologies
Migrating from Java Applets to plugin-free Java technologies An Oracle White Paper January, 2016 Migrating from Java Applets to plugin-free Java technologies Migrating from Java Applets to plugin-free Java technologies Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. Migrating from Java Applets to plugin-free Java technologies Executive Overview ........................................................................... 4 Browser Plugin Perspectives ............................................................. 4 Java Web Start .................................................................................. 5 Alternatives ....................................................................................... 6 Native Windows/OS X/Linux Installers ........................................... 6 Inverted Browser Control ............................................................... 7 Detecting Applets .............................................................................. 7 Migrating from Java Applets to plugin-free Java technologies Executive Overview With modern browser vendors working to restrict or reduce the support of plugins like -
X86 Memory Protection and Translation
2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Logical Diagram Binary Memory x86 Memory Protection and Threads Formats Allocators Translation User System Calls Kernel Don Porter RCU File System Networking Sync Memory Device CPU Today’s Management Drivers Scheduler Lecture Hardware Interrupts Disk Net Consistency 1 Today’s Lecture: Focus on Hardware ABI 2 1 2 COMP 790: OS Implementation COMP 790: OS Implementation Lecture Goal Undergrad Review • Understand the hardware tools available on a • What is: modern x86 processor for manipulating and – Virtual memory? protecting memory – Segmentation? • Lab 2: You will program this hardware – Paging? • Apologies: Material can be a bit dry, but important – Plus, slides will be good reference • But, cool tech tricks: – How does thread-local storage (TLS) work? – An actual (and tough) Microsoft interview question 3 4 3 4 COMP 790: OS Implementation COMP 790: OS Implementation Memory Mapping Two System Goals 1) Provide an abstraction of contiguous, isolated virtual Process 1 Process 2 memory to a program Virtual Memory Virtual Memory 2) Prevent illegal operations // Program expects (*x) – Prevent access to other application or OS memory 0x1000 Only one physical 0x1000 address 0x1000!! // to always be at – Detect failures early (e.g., segfault on address 0) // address 0x1000 – More recently, prevent exploits that try to execute int *x = 0x1000; program data 0x1000 Physical Memory 5 6 5 6 1 2/5/20 COMP 790: OS Implementation COMP 790: OS Implementation Outline x86 Processor Modes • x86 -
Discontinued Browsers List
Discontinued Browsers List Look back into history at the fallen windows of yesteryear. Welcome to the dead pool. We include both officially discontinued, as well as those that have not updated. If you are interested in browsers that still work, try our big browser list. All links open in new windows. 1. Abaco (discontinued) http://lab-fgb.com/abaco 2. Acoo (last updated 2009) http://www.acoobrowser.com 3. Amaya (discontinued 2013) https://www.w3.org/Amaya 4. AOL Explorer (discontinued 2006) https://www.aol.com 5. AMosaic (discontinued in 2006) No website 6. Arachne (last updated 2013) http://www.glennmcc.org 7. Arena (discontinued in 1998) https://www.w3.org/Arena 8. Ariadna (discontinued in 1998) http://www.ariadna.ru 9. Arora (discontinued in 2011) https://github.com/Arora/arora 10. AWeb (last updated 2001) http://www.amitrix.com/aweb.html 11. Baidu (discontinued 2019) https://liulanqi.baidu.com 12. Beamrise (last updated 2014) http://www.sien.com 13. Beonex Communicator (discontinued in 2004) https://www.beonex.com 14. BlackHawk (last updated 2015) http://www.netgate.sk/blackhawk 15. Bolt (discontinued 2011) No website 16. Browse3d (last updated 2005) http://www.browse3d.com 17. Browzar (last updated 2013) http://www.browzar.com 18. Camino (discontinued in 2013) http://caminobrowser.org 19. Classilla (last updated 2014) https://www.floodgap.com/software/classilla 20. CometBird (discontinued 2015) http://www.cometbird.com 21. Conkeror (last updated 2016) http://conkeror.org 22. Crazy Browser (last updated 2013) No website 23. Deepnet Explorer (discontinued in 2006) http://www.deepnetexplorer.com 24. Enigma (last updated 2012) No website 25. -
A Compiler Target Model for Line Associative Registers
University of Kentucky UKnowledge Theses and Dissertations--Electrical and Computer Engineering Electrical and Computer Engineering 2019 A Compiler Target Model for Line Associative Registers Paul S. Eberhart University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.141 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Eberhart, Paul S., "A Compiler Target Model for Line Associative Registers" (2019). Theses and Dissertations--Electrical and Computer Engineering. 138. https://uknowledge.uky.edu/ece_etds/138 This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Operating Systems & Virtualisation Security Knowledge Area
Operating Systems & Virtualisation Security Knowledge Area Issue 1.0 Herbert Bos Vrije Universiteit Amsterdam EDITOR Andrew Martin Oxford University REVIEWERS Chris Dalton Hewlett Packard David Lie University of Toronto Gernot Heiser University of New South Wales Mathias Payer École Polytechnique Fédérale de Lausanne The Cyber Security Body Of Knowledge www.cybok.org COPYRIGHT © Crown Copyright, The National Cyber Security Centre 2019. This information is licensed under the Open Government Licence v3.0. To view this licence, visit: http://www.nationalarchives.gov.uk/doc/open-government-licence/ When you use this information under the Open Government Licence, you should include the following attribution: CyBOK © Crown Copyright, The National Cyber Security Centre 2018, li- censed under the Open Government Licence: http://www.nationalarchives.gov.uk/doc/open- government-licence/. The CyBOK project would like to understand how the CyBOK is being used and its uptake. The project would like organisations using, or intending to use, CyBOK for the purposes of education, training, course development, professional development etc. to contact it at con- [email protected] to let the project know how they are using CyBOK. Issue 1.0 is a stable public release of the Operating Systems & Virtualisation Security Knowl- edge Area. However, it should be noted that a fully-collated CyBOK document which includes all of the Knowledge Areas is anticipated to be released by the end of July 2019. This will likely include updated page layout and formatting of the individual Knowledge Areas KA Operating Systems & Virtualisation Security j October 2019 Page 1 The Cyber Security Body Of Knowledge www.cybok.org INTRODUCTION In this Knowledge Area, we introduce the principles, primitives and practices for ensuring se- curity at the operating system and hypervisor levels. -
Programmable Digital Microcircuits - a Survey with Examples of Use
- 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention. -
Chapter 3 Protected-Mode Memory Management
CHAPTER 3 PROTECTED-MODE MEMORY MANAGEMENT This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities, including the physical memory requirements, segmentation mechanism, and paging mechanism. See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20, “8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes). 3.1 MEMORY MANAGEMENT OVERVIEW The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging. Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech- anism for implementing a conventional demand-paged, virtual-memory system where sections of a program’s execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is no mode bit to disable segmentation. The use of paging, however, is optional. These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single- task) systems, multitasking systems, or multiple-processor systems that used shared memory. As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory space (called the linear address space) into smaller protected address spaces called segments. Segments can be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).