The Leaf Beetles (Insecta: Coleoptera: Chrysomelidae): Potential Indicator Species Assemblages for Natural Area Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

The Leaf Beetles (Insecta: Coleoptera: Chrysomelidae): Potential Indicator Species Assemblages for Natural Area Monitoring Conservation of Biological Diversity: A Key to the Restoration of the Chesapeake Bay Ecosystem and Beyond. G. D. Theires, editor. Maryland Department of Natural Resources, Annapolis, MD, 1998 THE LEAF BEETLES (INSECTA: COLEOPTERA: CHRYSOMELIDAE): POTENTIAL INDICATOR SPECIES ASSEMBLAGES FOR NATURAL AREA MONITORING C. L. Staines and S. L. Staines 3302 Decker Place, Edgewater, MD 21037 Abstract: Chrysomelids are model herbivores. Most species are monophagous or narrowly oligo- phagous on a small number of plant families. In the tropics, the area most studied, chrysomelids have been found to be an excellent indicator of local species richness, due to not only their relative abundance but the ease of morphospecies sorting by a nonspecialist. The diversity of chrysomelids is exceptionally rich and a function of local plant diversity. These factors make chrysomelids an excellent candidate for indicator species assemblages for natural area monitoring. A project was started in 1997 on Plummers Island, Maryland, to determine whether chrysomelid species assemblages are indicators of plant diversity, site disturbance, and environmental heterogeneity. At this site we have the advantage of historical collection data dating back to 1901 that can be used as baseline information. : - ' , • INTRODUCTION .. the major shapers of ecosystems. Many think that Arthropods represent approximately 90% of all ecosystems such as the African savannah are shaped by species including plants (Pimentel et al. 1992), with vertebrates, but without the coprophagous arthropods the insects accounting for approximately 80% of all animal system would soo'n be overwhelmed with accumulated species diversity (Samways 1992). Together with micro- dung. Our dependence on invertebrates for survival is organisms, insects make up most animal biomass and mostly ignored (Wilson 1987). show the greatest diversity of ecological roles (Coulson Arthropods are found in every conceivable habitat and Crossley 1987). They are also known to be especial- and have many different functions important in ly vulnerable to small-scale habitat destruction (Ehrlich sustaining the balance of ecosystem processes (Wilson and Murphy 1987; Murphy et al. 1990). 1987; Hawkins and MacMahona1989; Walker 1992). American culture views arthropods as pests that need Insects are highly specialized in their niche require- to be controlled or eradicated (Byrne et al. 1984; ments, with diverse ecological roles that provide Howarth and Ramsay 1991; Kim 1993). The public's low important services to the ecosystem processes, as decom- esteem of invertebrates and fear of "creepy crawlies" is posers, consumers, predators, and parasites (Swift and exploited by the advertising industry's message that the Anderson 1989; Morris et al. 1991; Miller 1993). The only good bug is a dead bug. The only exceptions are active decomposition of plant and animal matters by aesthetically accepted species (e.g., butterflies) and those flies, termites, and beetles is essential to material- perceived as economically beneficial (e.g., honey bees). recycling systems (Frost 1959). Predators play an This negative perception and disproportionate amount of important role in regulating populations of phytophagous attention extends to conservationists (Pyle 1976; Mc- pests (DeBach and Rosen 1991; Olembo 1991). Arthro- Naughton 1989; Hafernik 1992). pods and other invertebrates are the major movers and It is a common misconception that vertebrates are shakers in subterranean ecosystems including litter 233 layers. They are involved in every aspect of the eco- feeding, and mating may all occur on one or a few neigh- system processes (Kiihnelt 1976; Paoletti et al. 1991). boring plants. Even in infertile or impoverished habitats, arthropods support the ecosystem in which insectivorous vertebrates INDICATOR SPECIES ASSEMBLAGES flourish (Braithwaite et al. 1988; Braithwaite 1991). The value of invertebrates as environmental indi- Within insects, beetles (Coleoptera) is the largest cators is only beginning to be appreciated (Magurran order, with more than 290,000 described species (Wilson 1988; Pearson and Cassola 1992; Oliver and Beattie 1987). Beetles are divided into 134 families, 114 of 1993). Indicator species are used to assess environ- which occur in America north of Mexico, they are found mental effects of human activities, determine regional living in just about every habitat except the open ocean, patterns of biodiversity, measure changes in community and they may occupy any trophic level (Downie and structure and function, and estimate land value (Hutto et Arnett 1996). al. 1987; Murphy et al. 1990; Noss 1990; Pearson and Chrysomelidae (leaf beetles) is one of the largest Cassola 1992). Insects show great potential as environ- families of beetles with approximately 50,000 described mental indicators because they are often specialized, they species worldwide placed in 19 subfamilies (Lopatin are easily observed and monitored in the field, and their 1977). This makes the family second only to the needs are often correlated with the needs of other fauna Curculionidae (weevils, Insecta: Coleoptera), and it has and flora (Wilson and Peter 1988; Samways 1989). more than twice the species richness of birds and Much of the previous work involving indicators has mammals combined (Klausnitzer 1981). In North used one or a few species. The weakness of this America, there are 1,481 species in 188 genera (Arnett approach is its narrow focus, which may result in the 1985). The chrysomelid fauna of Maryland has not been protection of one organism at the expense of others documented. Cavey and Staines (unpublished data) list (Landres et al. 1988; Kreman 1992, 1994; Kreman et al. 373 chrysomelid species in Maryland. 1993). Recently the concept of inventorying taxonomic Most chrysomelids live on terrestrial, aquatic, or assemblages that are likely to represent environmental subaquatic plant material as both larvae and adults as patterns, distributional patterns of species in other root, leaf, flower, or pollen feeders, whereas stem boring, unrelated assemblages, or the overall biodiversity of an leaf-mining, detritus-feeding, and ant-nest associates are area has been proposed (Kreman 1992,1994; Kreman et found among relatively few species. al. 1993; Pearson 1994; Favila and Halffter 1997). Chrysomelids are usually thought of as plant pests, A good indicator species assemblage should have both through direct plant feeding and through trans- several characteristics of which the most important are as mission of plant viruses (Selman 1988). Metcalf (1986) follows: (1) The indicator assemblage should be from a reported that the genus Diabrotica costs U.S. farmers $1 speciose taxon. The taxon should be important in the billion annually in corn alone. However, other chrysom- structure and function of the target ecosystem. (2) There elids perform useful roles in biological control of weeds must be sufficient information available on the taxonomy (White 1996), with the number of those being evaluated and natural history of the indicator assemblage to allow for such services increasing throughout the world. for the identification of species and the ecological Chrysomelids are also the target of biochemical pros- interpretation of the results. (3) The higher taxa should pecting. Many species sequester or modify plant be broadly distributed geographically and occupy a chemicals whereas others apparently manufacture a breadth of habitats. (4) The indicator assemblage must unique chemistry against predators (Pasteels et al. 1988, be easy to capture and the capture method must be 1994). Some of these compounds may be useful to standardized. An asymptote should be reached in several humans. weeks or months. (5) The indicator assemblage must be The Chrysomelidae are model herbivores. The one for which collection and other necessary activities majority of species are monophagous or narrowly can be carried out without jeopardizing the conservation oligophagous on a small number of plant families. of any member of the assemblage. (6) Capture data must Association with the host plant is intimate and pro- provide enough information to determine the com- longed. Oviposition, larval feeding, pupation, adult position and structure of the assemblage and its inter- 234 action with the rest of the community. Chrysomelids with ant nests and feed on ant eggs, exuviae, dead ant have not yet been evaluated as an indicator species bodies, and other refuse. Adults feed indiscriminately on assemblage but with a properly designed protocol the flowers, buds, young leaves, and pollen. Females either family meets all of these characteristics. drop their eggs to the ground or glue them to leaves. Eggs resemble seeds and are carried by ants to their Speciose Taxon nests. Not all clytrine larvae live in ant nests, but larvae There are approximately 50,000 chrysomelid species of species in some genera live under stones in the vicinity worldwide (Lopatin 1977), making the family the second of ant nests (Jolivet and Hawkeswood 1995). largest in the animal kingdom. It has more than twice Cryptocephalinae - Larvae of the 2,300 described the species richness of birds and mammals combined worldwide Cryptocephalinae species are free-living case (Klausnitzerl981). bearers and are either phytophagous or detriticolus. Adults are phytophagous on a wide range of plant Natural History families (Jolivet and Hawkeswood 1995). As with most large groups, the Chrysomelidae is Chlamisinae - The larvae of this
Recommended publications
  • AEXT Ucsu2062256012007.Pdf (677.1Kb)
    I N S E C T S E R I E S HOME & GARDEN Japanese Beetle no. 5.601 by W. Cranshaw1 The Japanese beetle, Popillia japonica, can be a very damaging insect in both the adult and larval stages. Larvae Quick Facts... chew roots of turfgrasses and it is the most important white grub pest of turfgrass in much of the northeastern quadrant Adult Japanese beetles cause of the United States. Adults also cause serious injury to leaves and serious injuries as they feed on the leaves flowers of many ornamentals, and flowers of many ornamentals, fruits, fruits, and vegetables. Among and vegetables. Among the plants most Figure 1. Japanese beetle. Photo the plants most commonly commonly damaged are rose, grape, courtesy of David Cappaert. damaged are rose, grape, crabapple, and beans. crabapple, and beans. Japanese beetle is also a regulated insect subject to internal quarantines in the United States. The presence of established Japanese beetle populations There are many insects in in Colorado restricts trade. Nursery products originating from Japanese beetle- Colorado that may be mistaken infested states require special treatment or are outright banned from shipment to for Japanese beetle. areas where this insect does not occur. To identify Japanese beetle Current Distribution of the Japanese Beetle consider differences in size, From its original introduction in New Jersey in 1919, Japanese beetle has shape and patterning. greatly expanded its range. It is now generally distributed throughout the country, excluding the extreme southeast. It is also found in parts of Ontario, Canada. Japanese beetle is most commonly transported to new locations with soil surrounding nursery plants.
    [Show full text]
  • 39Th Biennial Report: Agricultural Research in Kansas
    This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. Agricultural Research in Kansas 39th Biennial Report of the Kansas Agricultural Experiment Station Report of the Director for the Biennium Ending June 30, 1998 This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. FRONT COVER New alliances among research, education, and industry address all aspects of wheat production, processing, and marketing. We appreciate loans of photographs from: Mary Ellen Barkley Keith Behnke Ralph Charlton Barbara Gatewood Wayne Geyer Carol Shanklin This report was prepared in the Department of Communications by: Eileen Schofield, Senior Editor Gloria Schwartz, Publications Writer I Fred Anderson, Graphics Artist Information provided by: Teri Davis Doug Elcock Charisse Powell and KAES department offices This report is available on the World Wide Web at http://www.oznet.ksu.edu. Contribution no. 99-331-S from the Kansas Agricultural Experiment Station This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. Letter of Transmittal Office of the Director To the Honorable William Graves, Governor of Kansas It is my pleasure to transmit herewith the report of the Agricultural Experiment Station of the Kansas State University of Agriculture and Applied Science for the biennium ending June 30, 1998.
    [Show full text]
  • Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015)
    Working List of Prairie Restricted (Specialist) Insects in Wisconsin (11/26/2015) By Richard Henderson Research Ecologist, WI DNR Bureau of Science Services Summary This is a preliminary list of insects that are either well known, or likely, to be closely associated with Wisconsin’s original native prairie. These species are mostly dependent upon remnants of original prairie, or plantings/restorations of prairie where their hosts have been re-established (see discussion below), and thus are rarely found outside of these settings. The list also includes some species tied to native ecosystems that grade into prairie, such as savannas, sand barrens, fens, sedge meadow, and shallow marsh. The list is annotated with known host(s) of each insect, and the likelihood of its presence in the state (see key at end of list for specifics). This working list is a byproduct of a prairie invertebrate study I coordinated from1995-2005 that covered 6 Midwestern states and included 14 cooperators. The project surveyed insects on prairie remnants and investigated the effects of fire on those insects. It was funded in part by a series of grants from the US Fish and Wildlife Service. So far, the list has 475 species. However, this is a partial list at best, representing approximately only ¼ of the prairie-specialist insects likely present in the region (see discussion below). Significant input to this list is needed, as there are major taxa groups missing or greatly under represented. Such absence is not necessarily due to few or no prairie-specialists in those groups, but due more to lack of knowledge about life histories (at least published knowledge), unsettled taxonomy, and lack of taxonomic specialists currently working in those groups.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Chrysomela 43.10-8-04
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion.
    [Show full text]
  • Florida Predatory Stink Bug (Unofficial Common Name), Euthyrhynchus Floridanus(Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W
    EENY157 Florida Predatory Stink Bug (unofficial common name), Euthyrhynchus floridanus (Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W. Mead and David B. Richman2 Introduction Distribution The predatory stink bug, Euthyrhynchus floridanus (Lin- Euthyrhynchus floridanus is primarily a Neotropical species naeus) (Figure 1), is considered a beneficial insect because that ranges within the southeastern quarter of the United most of its prey consists of plant-damaging bugs, beetles, States. and caterpillars. It seldom plays a major role in the natural control of insects in Florida, but its prey includes a number Description of economically important species. Adults The length of males is approximately 12 mm, with a head width of 2.3 mm and a humeral width of 6.4 mm. The length of females is 12 to 17 mm, with a head width of 2.4 mm and a humeral width of 7.2 mm. Euthyrhynchus floridanus (Figure 2) normally can be distinguished from all other stink bugs in the southeastern United States by a red- dish spot at each corner of the scutellum outlined against a blue-black to purplish-brown ground color. Variations occur that might cause confusion with somewhat similar stink bugs in several genera, such as Stiretrus, Oplomus, and Perillus, but these other bugs have obtuse humeri, or at least lack the distinct humeral spine that is present in adults of Euthyrhynchus. In addition, species of these genera Figure 1. Adult of the Florida predatory stink bug, Euthyrhynchus known to occur in Florida have a short spine or tubercle floridanus (L.), feeding on a beetle. situated on the lower surface of the front femur behind the Credits: Lyle J.
    [Show full text]
  • Utilizing Novel Grasslands for the Conservation and Restoration Of
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Utilizing novel grasslands for the conservation and restoration of butterflies nda other pollinators in agricultural ecosystems John Thomas Delaney Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biodiversity Commons, Ecology and Evolutionary Biology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Delaney, John Thomas, "Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems" (2014). Graduate Theses and Dissertations. 14097. https://lib.dr.iastate.edu/etd/14097 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Utilizing novel grasslands for the conservation and restoration of butterflies and other pollinators in agricultural ecosystems by John Thomas Delaney A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee: Diane M. Debinski, Major Professor David M. Engle Mary A. Harris Amy L. Toth Brian J. Wilsey Iowa State University Ames, Iowa 2014 Copyright © John Thomas Delaney, 2014. All rights reserved. ii Dedication I dedicate this dissertation to all of my family, friends, and mentors who have helped me along in this journey.
    [Show full text]
  • CERTAIN INSECT VECTORS of APLANOBACTER STEWARTI ' by F
    CERTAIN INSECT VECTORS OF APLANOBACTER STEWARTI ' By F. W. Poos, senior entomologist, Division of Cereal and Forage Insects, Bureau of Entomology and Plant Quarantine; and CHARLOTTE ELLIOTT, associate pa- thologist, Division of Cereal Crops and Diseases, Bureau of Plant Industry, United States Department of Agriculture ^ INTRODUCTION Bacterial wilt of corn (Zea mays L.) caused by Aplanobacter stewarti (E. F. Sm.) McC. was exceedingly destructive and more widely dis- tributed during 1932 and 1933 than during any previous time in the history of the disease. Since 1897, when it was first described by Stewart, it has been studied by a number of investigators whose work has pointed more and more toward insects as a means of dis- semination of the causal organism. Kand and Cash (7) ^ during 1920-23 found that bacterial wilt could be transmitted from diseased to healthy com plants by two species of flea beetles, Chaetocnema pulicaria Melsh. and C, denticulata (111.), and by the spotted cucum- ber beetle, Diabrotica duodecimpunctata (Fab.). IvanoíF (ö) reported transmission from diseased to healthy plants by the larval stage of the corn rootworm, Diabrotica longicornis (Say), as it attacked the roots of young seedling com plants. He also reported that the bac- teria of A. stewarti entered the corn plants through wounds made by white grubs, the larvae of Phyllophaga sp., feeding upon the roots in infested soil. A summary of this work, together with a brief review of the other literature on this disease, has recently appeared else- where (1), The results of experiments by previous investigators on soil trans- mission of the causal organism indicate that transmission through the soil to uninjured roots of com plants is exceedingly rare, if it ever occurs.
    [Show full text]
  • Toxicology in Antiquity
    TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Forest Health Conditions in Ontario, 2017
    Forest Health Conditions in Ontario, 2017 Ministry of Natural Resources and Forestry Forest Health Conditions in Ontario, 2017 Compiled by: • Ontario Ministry of Natural Resources and Forestry, Science and Research Branch © 2018, Queen’s Printer for Ontario Printed in Ontario, Canada Find the Ministry of Natural Resources and Forestry on-line at: <http://www.ontario.ca>. For more information about forest health monitoring in Ontario visit the natural resources website: <http://ontario.ca/page/forest-health-conditions> Some of the information in this document may not be compatible with assistive technologies. If you need any of the information in an alternate format, please contact [email protected]. Cette publication hautement spécialisée Forest Health Conditions in Ontario, 2017 n'est disponible qu'en anglais en vertu du Règlement 671/92 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec le ministère des Richesses naturelles au <[email protected]>. ISSN 1913-617X (Online) ISBN 978-1-4868-2275-1 (2018, pdf) Contents Contributors ........................................................................................................................ 4 État de santé des forêts 2017 ............................................................................................. 5 Introduction......................................................................................................................... 6 Contributors Weather patterns ...................................................................................................
    [Show full text]
  • Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230
    Curriculum Vitae Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230 Research Associate The Smithsonian Tropical Research Institute Box 2072, Balboa, Ancon Republic of Panamá Education Ph. D., State University of New York at Stony Brook (1977) M.A., State University of New York at Stony Brook (1975) B.A., Hiram College, Hiram, Ohio (1972) Honors, Awards and Grants National Science Foundation DEB 0108213 (2001-2005) $533,895 Andrew W. Mellon Foundation Grant for Exploratory Research (1996) $3000 Chapman Memorial Fund Grant, American Museum of Natural History (1977) $1000 Invited Participant. Organization for Tropical Studies Field Ecology Course. Costa Rica (1976) Graduate Council Fellow. S.U.N.Y. at Stony Brook (1972-1974) Magna Cum Laude, Dept. Honors in Art and Biology. Hiram College (1972) Phi Beta Kappa Professional experience 1999-present Research Associate Professor. Department of Ecology and Evolution. Stony Brook University. 1997-present Research Associate. The Smithsonian Tropical Research Institute, Panamá. 1996-1998 Research Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. 1992-1996 Adjunct Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. Publications Vencl FV & Srygley RB (2013) Proximate effects of maternal oviposition preferences on defense efficacy and larval survival in a diet-specialized tortoise beetle: who knows best - mothers or their progeny? Ecol. Entomol DOI: 10.1111/een.12052 Vencl FV & Srygley RB (2013) Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. Evo. Ecol.
    [Show full text]
  • Agricultural Research in Kansas
    This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. 38th BIENNIAL REPORT AGRICULTURAL RESEARCH IN KANSAS DIRECTOR'S REPORT FOR THE BIENNIUM JULY 1, 1994 TO JUNE 30, 1996 AGRICULTURAL EXPERIMENT STATION KANSAS STATE UNIVERSITY t This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. Agricultural Research in Kansas 38th Biennial Report of the Kansas Agricultural Experiment Station Report of the Director for the Biennium Ending June 30, 1996 This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu. FRONT COVER Four new cooperative efforts focus on agricultural products, animal␣health and management, food safety, and soil and water quality. We appreciate loans of photographs from: John Brethour Robert Cochran Department of Entomology Wayne Geyer Jay Ham Tim Herrman National Archives Randall Phebus Danny Simms Tim Todd This report was prepared in the Department of Communications by: Eileen Schofield, Associate Editor Gloria Schwartz, Information Writer I Fred Anderson, Graphics Artist Information provided by: Teri Davis Doug Elcock Charisse Powell and KAES department offices This report is available on the World Wide Web at http://www.oznet.ksu.edu. Contribution no. 97-312-S from the Kansas Agricultural Experiment Station This publication from the Kansas State University Agricultural Experiment Station and Cooperative Extension Service has been archived. Current information is available from http://www.ksre.ksu.edu.
    [Show full text]