Pressure Changes in the Kager Fat Pad at the Extremes of Ankle Motion Suggest a Potential Role in Achilles Tendinopathy

Total Page:16

File Type:pdf, Size:1020Kb

Pressure Changes in the Kager Fat Pad at the Extremes of Ankle Motion Suggest a Potential Role in Achilles Tendinopathy Knee Surgery, Sports Traumatology, Arthroscopy https://doi.org/10.1007/s00167-019-05585-1 ANKLE Pressure changes in the Kager fat pad at the extremes of ankle motion suggest a potential role in Achilles tendinopathy F. Malagelada1,2 · J. Stephen3,4 · M. Dalmau‑Pastor2,5,8 · L. Masci6 · M. Yeh4 · J. Vega2,5,7,9 · J. Calder3,4 Received: 29 March 2019 / Accepted: 18 June 2019 © European Society of Sports Traumatology, Knee Surgery, Arthroscopy (ESSKA) 2019 Abstract Introduction The Kager fat pad is one of the largest soft tissue structures local to the ankle joint, yet it is poorly understood. It has been hypothesised to have a role in Achilles tendinopathy. This study aimed to investigate the pressure areas in the Kager fat pad adjacent to the Achilles tendon and to assess the anatomy and deformation of the Kager fat pad in cadavers. Methods Twelve fresh frozen cadaveric ankles (mean age 44 years, range 38–51) were mounted in a customized testing rig, enabling plantar fexion and dorsifexion of the ankle, with the Achilles tendon loaded. A needle tipped pressure sensor was inserted in two areas of the Kager fat pad under ultrasound guidance (retrocalcaneal bursa and at 3 cm proximal from Achil- les insertion). Pressure readings were recorded at diferent fexion angles. Following testing, the specimens were dissected to expose the Kager fat pad and retrieve it for analysis. MRI images were also taken from three healthy volunteers and the Kager fat pad deformation examined. Results Mean pressures signifcantly increased in all specimens at terminal ankle plantar and dorsi fexion in both regions (p < 0.05). The Kager fat pad was consistently adherent to the Achilles at its posterior aspect for a mean length of 7.7 cm (SD 0.27, 89% of KFP length). The most distal part of the Kager fat pad was the exception and it detached from the Achilles to give way to the retroalcaneal bursa for a mean length of 0.92 cm (SD 0.24, 11% of KFP length). The bursal space is partially occupied by a constant ‘wedge’ extension of Kager fat pad. The mean volume of the whole Kager fat pad was 10.6 ml (SD 3.37). Video and MRI demonstrated that the Kager fat pad undergoes signifcant deformation during plantar fexion as it is displaced superiorly by the Achilles, with the wedge being forced into the retrocalcaneal bursal space. Conclusion The Kager fat pad does not remain static during ankle range of motion, but deforms and its pressure also changes. This observation supports the theory that it acts as a shock-absorber to the Achilles tendon and pathological changes to the fat pad may be clinically important in the development of Achilles tendinopathy. Keywords Achilles · Ankle · Anatomy · Biomechanics · Cadaver · Fat pad Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s0016 7-019-05585 -1) contains supplementary material, which is available to authorized users. * F. Malagelada 5 GRECMIP (Groupe de Recherche et d’Etude en Chirurgie [email protected] Mini-Invasive du Pied), Merignac, France 6 Pure Sports Medicine Clinic, London, UK 1 Department of Trauma and Orthopaedic Surgery, Royal London Hospital, Barts Health NHS Trust, London, UK 7 Foot and Ankle Unit, Hospital Quirón and Clinica Tres Torres, Barcelona, Spain 2 Human Anatomy and Embryology Unit, Department of Pathology and Experimental Therapeutics, University 8 Manresa Health Science School, University of Vic–Central of Barcelona, Barcelona, Spain University of Catalonia, Vic, Barcelona, Spain 3 Fortius Clinic, London, UK 9 European Foot and Ankle Society (EFAS)-Research Committee, Basel, Switzerland 4 Department of Bioengineering, Imperial College London, London, UK Vol.:(0123456789)1 3 Knee Surgery, Sports Traumatology, Arthroscopy Introduction Materials and methods Kager’s fat pad (KFP), also known as the pre-Achilles A total of 12 fresh-frozen cadaveric feet and ankles (mean fat pad, is one of the largest lipomatous structures of the age ± SD = 41.4 ± 10.3 years, range 22–52 years; 6 male) leg. It is located in the posterior ankle joint, occupying with no history of surgery or disease were obtained from a Kager’s triangle, bordered by the Achilles tendon poste- tissue bank. The specimens were preserved in polyethylene riorly, the crural fascia and fexor hallucis longus (FHL) bags, stored frozen at − 20 °C and thawed before use. None muscle anteriorly, and the posterior calcaneal tuberosity at of the specimens showed a degree of ankle stifness beyond its base inferiorly. In an anatomical and histological study, the physiological range of motion (5° of dorsifexion to 40° Theobald et al. showed that the KFP has three regions of plantar fexion). that are closely related to the sides of the triangle. They named those the Achilles-related, the FHL-related, and the bursal wedge adjacent to the calcaneus. They concluded Specimen preparation and loading that the three regions have specialized functions: the FHL part contributes to moving the bursal wedge during plantar The foot and ankle specimens were prepared to enable meas- fexion, the Achilles part protects blood vessels entering urement of pressure in the KFP during ankle plantar- and the tendon, and the bursal wedge is thought to minimize dorsifexion. The gastrocnemius and soleus were identifed pressure changes in the bursa. Despite generic descriptions and a cloth material was surrounded and securely stitched of the KFP in the literature, to the best of our knowledge, to the proximal end of muscles, to provide anchorage for the there are no objective data fully describing the parameters application of load to the Achilles tendon. The proximal tibia of the shape and volume of the KFP. was cut at approximately 40 cm above the joint line and an Close relationship of the KFP with the Achilles tendon intramedullary rod cemented into it. Distally the fbula was has been shown to have a protective efect to the blood secured in an anatomical position using a transverse bone vessels crossing the KFP and the tendon itself. It has been screw to minimize joint excursion. postulated that pressure changes within areas of the KFP The ankle was mounted in a testing rig with the foot may contribute to the process of Achilles tendinopathy or pointing downwards and the second metatarsal pointing tears of the fascia cruris [1, 2]. Equally, excision of part downward, aligned with the shaft of the tibia. Tension was of the KFP during hindfoot endoscopy to create a working applied to the Achilles tendon in its physiological direction area may have biomechanical consequences for ankle joint in relation to the tibial axis. The gastroc-soleus complex was function. Similar studies have been performed to assess the loaded with 62 N, in accordance with prior work [6]. This infrapatellar fat pad of the knee suggesting that it plays a load represents an unloaded open kinetic chain calf raise role in stabilizing the patella [3]. Around the KFP, pres- with the knee extended. Higher load levels were not used to sure measurements have also been investigated and con- avoid damaging the soft tissues across the tests performed troversy exists as to whether the extremes of motion result on each ankle. Closed kinetic chain motion (by placing a in higher pressure load to the retrocalcaneal bursa and the board across the foot) was also assessed during pilot test- midportion of the Achilles [4, 5]. ing and gave results similar to those of open kinetic chain The aim of this study was to investigate the pressure assessment. This setup has been used previously for ankle changes during ankle range of motion in two areas of joint testing [6]. Kager fat pad, defned in relation to the Achilles tendon: the mid-portion (location of non-insertional Achilles ten- Pressure measurement assessment dinopathy) and the retrocalcaneal bursa (location of inser- tional Achilles tendinopathy). Secondly, it was aimed to evaluate the KFP deformation during ankle motion directly A Gaeltec CTN/4F-HP pressure transducer with a Lemo in vitro, and using magnetic resonance imaging (MRI) 2306 connector (Gaeltec Devices Ltd, Dunvegan, UK) was in vivo. The fnal aim was to re-examine the anatomical used to measure pressure within the KFP. The tip diameter attachments of the KFP, its dimensions and volume using of the sensor was 1.5 mm, with a sensitivity of 1.17 μV/V/ young, fresh cadavers. It was hypothesised that the KFP is kPa. Calibration was determined as per the manufacturer subject to pressure changes throughout the ankle’s range of guidelines. Test re-test readings from the same specimen motion and deformation that is in close relationship with established excellent repeatability with an ICC of 0.97. the Achilles tendon suggesting a potential proprioceptive Under ultrasound guidance, the tip of the sensor was or feedback role of the KFP. introduced through the skin into two regions of the KFP in contact with the Achilles: (a) the midportion; an area of the Achilles located 3 cm proximal to its insertion onto the 1 3 Knee Surgery, Sports Traumatology, Arthroscopy calcaneum and (b) the retrocalcaneal bursa; at the insertion fexion to full dorsifexion. The participants were asked of the Achilles on the calcaneum. The sensor was inserted to keep the desired position of the ankle during the time under ultrasound vision by an experienced ultrasonographer. required for the obtention of images. The images were made The tip was located at the midpoint of the Achilles width in into a movie, by taking the same sagittal slice from scans the coronal plane and in the two previously mentioned areas taken at diferent fexion angles. in the sagittal plane. Once the tip of the sensor was placed IRB approval was obtained from the local Research appropriately the pressure measurements were taken in dif- Ethics Committee of Imperial College London (Number: ferent ankle degrees of dorsi- and plantar fexion.
Recommended publications
  • Adipose Tissue As Pain Generator in the Lower Back and Lower Extremity
    Lee et al. HCA Healthcare Journal of Medicine (2020) 1:5 https://doi.org/10.36518/2689-0216.1102 Clinical Review Adipose Tissue as Pain Generator in the Lower Back and Lower Extremity: Application in Author affiliations are listed Musculoskeletal Medicine at the end of this article. Se Won Lee, MD ,1 Craig Van Dien, MD ,2 Sun Jae Won, MD, PhD3 Correspondence to: Se Won Lee, MD Abstract Department of Physical Medicine and Rehabilitation Description MoutainView Medical Adipose tissue (AT) has diverse and important functions in body insulation, mechanical protection, energy metabolism and the endocrine system. Despite its relative abundance in Center the human body, the clinical significance of AT in musculoskeletal (MSK) medicine, partic- 2880 N Tenaya Way, 2nd Fl, ularly its role in painful MSK conditions, is under-recognized. Pain associated with AT can Las Vegas, NV 89128 be divided into intrinsic (AT as a primary pain generator), extrinsic (AT as a secondary pain ([email protected]) generator) or mixed origin. Understanding AT as an MSK pain generator, both by mechanism and its specific role in pain generation by body region, enhances the clinical decision-making process and guides therapeutic strategies in patients with AT-related MSK disorders. This article reviews the existing literature of AT in the context of pain generation in the lower back and lower extremity to increase clinician awareness and stimulate further investigation into AT in MSK medicine. Keywords adipose tissue; fat pad; musculoskeletal pain; connective tissue; lipodystrophy; lipoma; obe- sity; lipedema; pain generator Introduction lower extremity, focusing on its pathogenic role Mounting evidence supports the various func- as a pain generator as well as practical diagno- tions of adipose tissue (AT), most notably its sis and management.
    [Show full text]
  • High Lateral Portal for Sparing the Infrapatellar Fat-Pad During ACL Reconstruction
    Orthopaedics & Traumatology: Surgery & Research (2011) 97, 870—873 Available online at www.sciencedirect.com TECHNICAL NOTE High lateral portal for sparing the infrapatellar fat-pad during ACL reconstruction B. Sonnery-Cottet ∗, P. Archbold, R. Zayni, M. Thaunat, J. Bortolletto, J.-M. Fayard, P. Chambat Paul-Santy orthopaedic center, 24, avenue Paul-Santy, 69008 Lyon, France Accepted: 23 August 2011 KEYWORDS Summary During arthroscopic ACL reconstruction, intra-articular visualization can be com- Infrapatellar Fat Pad; promised by the interposition of the infrapatellar fat pad (IPFP) between the scope and the Anterior cruciate notch. In this technical note, we describe our technique of using lateral higher arthroscopic ligament portal, starting arthroscopy with the resection of the ligamentum mucosum and performing the reconstruction; tibial tunnel in 40◦ of knee flexion to optimise the intra-articular view without IPFP debride- Arthroscopy; ment. This technique was performed in 112 consecutive arthroscopic ACL reconstructions and Ligamentum compared to that in the previous 112 cases in which a conventional method was used. The use mucosum; of this technique was associated with a shorter operative time and no increase in the difficulty Arthroscopic portal in performing associated meniscal procedures. © 2011 Elsevier Masson SAS. All rights reserved. Introduction can influence patellar and knee kinematics [4]. Scarring of the anterior interval changes the mechanics of the anterior During arthroscopic ACL reconstruction, intra-articular visu- structures of the knee and may lead to refractory anterior alization can be compromised by the interposition of the knee pain [1]. Some studies have shown that the excessive infrapatellar fat pad (IPFP) between the scope and the resection of IPFP can have negative consequences on the notch.
    [Show full text]
  • Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and Without Osteoarthritis
    International Journal of Molecular Sciences Article Infrapatellar Fat Pad Gene Expression and Protein Production in Patients with and without Osteoarthritis 1, 2,3, 4,5 Elisa Belluzzi y , Veronica Macchi y , Chiara Giulia Fontanella , Emanuele Luigi Carniel 5,6, Eleonora Olivotto 7 , Giuseppe Filardo 8, Gloria Sarasin 2, Andrea Porzionato 2,3, Marnie Granzotto 9, Assunta Pozzuoli 1 , Antonio Berizzi 10, Manuela Scioni 11, Raffaele De Caro 2,3, Pietro Ruggieri 10 , Roberto Vettor 9, Roberta Ramonda 12, Marco Rossato 9,* and Marta Favero 12,13 1 Musculoskeletal Pathology and Oncology Laboratory, Orthopedic and Traumatologic Clinic, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, 35128 Padova, Italy; [email protected] (E.B.); [email protected] (A.P.) 2 Institute of Human Anatomy, Department of Neurosciences, University of Padova, 35121 Padova, Italy; [email protected] (V.M.); [email protected] (G.S.); [email protected] (A.P.); raff[email protected] (R.D.C.) 3 L.i.f.e. L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padova, Italy 4 Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy; [email protected] 5 Centre for Mechanics of Biological Materials, University of Padova, 35131 Padova, Italy; [email protected] 6 Department of Industrial Engineering, University of Padova, 35131 Padova, Italy 7 RAMSES Laboratory, RIT Department, IRCCS Istituto Ortopedico
    [Show full text]
  • Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy
    RESEARCH ARTICLE Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy Jessica Pingel1☯, M. Christine H. Petersen2,3☯, Ulrich Fredberg4,Søren G. Kjær4, Bjørn Quistorff3, Henning Langberg5, Jacob B. Hansen2* 1 Department of Exercise and Nutrition, University of Copenhagen, Copenhagen, Denmark, 2 Department of Biology, University of Copenhagen, Copenhagen, Denmark, 3 Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark, 4 Diagnostic Centre, Silkeborg Regional Hospital, Silkeborg, Denmark, 5 CopenRehab, Department of Public Health, University of Copenhagen, Copenhagen, Denmark ☯ These authors contributed equally to this work. * [email protected] Abstract OPEN ACCESS Background Citation: Pingel J, Petersen MCH, Fredberg U, Kjær Achilles tendinopathy is a painful inflammatory condition characterized by swelling, stiffness SG, Quistorff B, Langberg H, et al. (2015) and reduced function of the Achilles tendon. Kager’s fat pad is an adipose tissue located in Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy. PLoS ONE 10 the area anterior to the Achilles tendon. Observations reveal a close physical interplay be- (5): e0127811. doi:10.1371/journal.pone.0127811 tween Kager’s fat pad and its surrounding structures during movement of the ankle, sug- ’ Academic Editor: Hazel RC Screen, Queen Mary gesting that Kager s fat pad may stabilize and protect the mechanical function of the ankle University of London, UNITED KINGDOM joint. Received: January 19, 2015 Accepted: April 18, 2015 Aim Published: May 21, 2015 The aim of this study was to characterize whether Achilles tendinopathy was accompanied by changes in expression of inflammatory markers and metabolic enzymes in Kager’sfat Copyright: © 2015 Pingel et al.
    [Show full text]
  • The Infrapatellar Fat Pad from Diseased Joints Inhibits Chondrogenesis of Mesenchymal Stem Cells W
    EuropeanW Wei et Cellsal. and Materials Vol. 30 2015 (pages 303-314) DOI: 10.22203/eCM.v030a21 Anti-chondrogenic effect ofISSN IPFP 1473-2262 on MSCs THE INFRAPATELLAR FAT PAD FROM DISEASED JOINTS INHIBITS CHONDROGENESIS OF MESENCHYMAL STEM CELLS W. Wei1, R. Rudjito1, N. Fahy2, J.A.N. Verhaar1, S. Clockaerts1, Y.M. Bastiaansen-Jenniskens1,§ and G.J.V.M. van Osch1,3,§,* 1Department of Orthopaedics, Erasmus MC University Medical Center, Rotterdam, The Netherlands 2Regenerative Medicine Institute, National University of Ireland, Galway, Ireland 3Department of Otorhinolaryngology, Erasmus MC University Medical Center, Rotterdam, The Netherlands §Both authors contributed equally Abstract Introduction Cartilage repair by bone marrow derived mesenchymal Articular cartilage has limited self-healing capabilities stem cells (MSCs) can be influenced by inflammation and surgical intervention using bone marrow stimulation in the knee. Next to synovium, the infrapatellar fat pad techniques, such as the microfracture procedure, can be (IPFP) has been described as a source for inflammatory used to activate mesenchymal stem cells (MSCs) from factors. Here, we investigated whether factors secreted the underlying bone marrow to repair the defect (Shapiro by the IPFP affect chondrogenesis of MSCs and whether et al., 1993; Steadman et al., 2003). However, instead of this is influenced by different joint pathologies or obesity. a normal hyaline cartilage matrix, a fibrocartilaginous Furthermore, we examined the role of IPFP resident cartilage matrix fills up the defect (Frisbie et al., 2003; macrophages. First, we made conditioned medium from Kaul et al., 2012; Shapiro et al., 1993). An explanation IPFP obtained from osteoarthritic joints, IPFP from why hyaline cartilage production is inhibited could be traumatically injured joints during anterior cruciate that the cartilage defect is located in a post-traumatic ligament reconstruction, and subcutaneous adipose inflammatory environment (Irie et al., 2003).
    [Show full text]
  • Magnetic Resonance Imaging of Variants of the Knee Snoeckx A, Vanhoenacker F M, Gielen J L, Van Dyck P, Parizel P M
    Pictorial Essay Singapore Med J 2008; 49(9) : 734 CME Article Magnetic resonance imaging of variants of the knee Snoeckx A, Vanhoenacker F M, Gielen J L, Van Dyck P, Parizel P M ABSTRACT 1a Magnetic resonance imaging has become the imaging modality of choice for evaluation of internal derangements of the knee. Anatomical variants are often an incidental finding on these examinations. Knowledge and recognition of variants is important, not only to avoid misdiagnosis but also to avoid additional imaging and over-treatment. This pictorial essay provides an overview of variants encountered during a review of 1,873 magnetic resonance imaging examinations of the knee. Emphasis is laid on these variants that are clinically important. Keywords: knee anatomy, knee imaging, knee variants, magnetic resonance imaging Singapore Med J 2008; 49(9): 734-744 INTRODUCTION Magnetic resonance (MR) imaging has become the imaging modality of choice for evaluation of internal derangements of the knee. Normal variants are often encountered as incidental finding on MR images. Department of Knowledge and recognition of variants is important for Radiology, Antwerp University accurate analysis of MR images. Incorrect interpretation Fig. 1 Sagittal SE T1-W MR image of the right knee in a 20- Hospital, may lead to unnecessary additional imaging and over- year-old woman shows residual islands of red bone marrow in University of the distal femur. There are no signal changes in the epiphysis or Antwerp, treatment. Initially, we performed a review of the literature patella, which contain fatty yellow marrow. Wilrijkstraat 10, B-2650 Edegem, on normal variants of the knee.
    [Show full text]
  • Function of the Infrapatellar Fat Pad and Advanced Hoffa's Disease with Ossification
    Arch Rheumatol 2014;29(2):134-137 doi: 10.5606/ArchRheumatol.2014.3499 CASE REPORT Function of the Infrapatellar Fat Pad and Advanced Hoffa's Disease With Ossification Murat KARKUCAK,1 Erhan ÇAPKIN,1 İpek CAN,1 Avni Mustafa ÖNDER,2 Ali KÜPELİ3 1Department of Physical Medicine and Rehabilitation, Medical Faculty of Karadeniz Technical University, Division of Rheumatology, Trabzon, Turkey 2Department of Orthopedics and Traumatology, Medical Faculty of Karadeniz Technical University, Trabzon, Turkey 3Department of Radiology, Medical Faculty of Karadeniz Technical University, Trabzon, Turkey Being one of the conditions presenting with patellar pain, Hoffa’s syndrome is characterized with inflammation of the fat tissue in the patellar region. In advanced stage, this may lead to transformation of the fibrocartilage tissue and ossification of the infrapatellar fat pad. Some cases can be associated with tumors or tumor-like conditions. In this article, we describe a 72-year-old female case suffering from knee pain for a long time and discuss the end-stage Hoffa's disease and function of the infrapatellar fat pad in the light of literature. Keywords: Hoffa’s syndrome; infrapatellar fat pad; ossification. Hoffa’s disease (or Hoffa’s fat pad syndrome) is Recurrent acute traumas, micro-traumas and a clinical condition, which develops as a result surgical procedures on the knee joint may cause of impingement of the infrapatellar fat pad hypertrophy following inflammation of the IFP. In (IFP) between the femorotibial and femoropatellar chronic phase, this may lead to transformation of spaces after inflammation and edema, and may the fibrocartilage tissue and ossification of the IFP cause knee pain.1 It generally begins with trauma (imitating enchondroma).5-7 at early ages.
    [Show full text]
  • Infrapatellar Plica Injury: Magnetic Resonance Imaging Review of a Neglected Cause of Anterior Knee Pain
    SA Journal of Radiology ISSN: (Online) 2078-6778, (Print) 1027-202X Page 1 of 8 Pictorial Review Infrapatellar plica injury: Magnetic resonance imaging review of a neglected cause of anterior knee pain Authors: Synovial plicae are normal remnants of synovial membranes within the knee joint cavity and 1 Dharmendra K. Singh are usually asymptomatic. Pathological infrapatellar plica, which is mostly due to plica injury, Heena Rajani1 Mukul Sinha1 may be a potential cause of anterior knee pain, but is often overlooked and under-reported on Amit Katyan1 magnetic resonance imaging (MRI). This pictorial review illustrates the MRI findings of Saurabh Suman1 infrapatellar plica injury and associated knee injuries, with emphasis on its differentiation 1 Aayushi Mishra from the mimics of plica injury. Bibhu K. Nayak2 Keywords: MR imaging; knee; synovial plica; infrapatellar plica injury; anterior knee pain. Affiliations: 1Department of Radiology, Vardhman Mahavir Medical College, Safdarjung Hospital, Introduction New Delhi, India Synovial plicae are normal folds of synovial tissue within a joint cavity, which represent normal 2Department of Sport’s remnants of synovial membranes during embryological development of the knee joint. There are Medicine, Vardhman Mahavir four main plicae in the knee joint, namely infrapatellar plica (IPP) or ligamentum mucosum, Medical College, Safdarjung suprapatellar plica, medio-patellar plica and lateral patellar plica, in decreasing order of Hospital, New Delhi, India occurrence.1 These may become symptomatic because of plica syndrome or injury. Although IPP Corresponding author: is the most commonly encountered plica, present in about 65% of patients, traditionally, it is Heena Rajani, considered least likely to be symptomatic.2,3 [email protected] Dates: This review illustrates a series of cases where patients presented to the Radiology department Received: 29 Aug.
    [Show full text]
  • Infrapatellar Fat Pad Syndrome : a Review of Anatomy, Function, Treatment and Dynamics
    Acta Orthop. Belg., 2016, 82, 94-101 ORIGINAL STUDY Infrapatellar fat pad syndrome : a review of anatomy, function, treatment and dynamics Mr James MACE, Prof Waqar BHATTI, Mr Sanjay ANAND From the Department of Trauma and Orthopaedics, Stepping Hill hospital NHS Foundation Trust, Cheshire, UK The infrapatellar (Hoffa’s) fatpad is an important small case series (3,14,15,17,19-21,26,29,35,38,39,43,46, structure within the knee, whose function and role 47). We present an overview of information pertain- are both poorly understood. This review explores the ing to the Infrapatellar fat pad and the role it may anatomy, neural innervation, vascularity, role in bio- play in pathology and pain around the knee. mechanics, pathology, imaging (stressing the impor- tance of dynamic ultrasound assessment) and treat- Anatomy ment of disorders presenting within this structure. Keywords : infrapatellar fatpad ; Hoffa’s fatpad ; ultra- The infrapatellar fat pad is one of three fat pads sound ; fatpad impingement. located in the anterior aspect of the knee (24). Its macroscopic, arthroscopic and radiographic ana- tomic boundaries are all well described (7,11,21,24,32, INTRODUCTION 37,43,49,50). Gallagher et al detail cadaveric anato- my, finding it to be a constant structure bounded In 1904, Albert Hoffa first attributed impinge- superiorly by the inferior pole of the patella, inferi- ment of the Infrapatellar fat pad to symptoms of orly by the anterior tibia, intermeniscal ligament, knee pain. He described inflammatory fibrous hy- meniscal horns and infrapatellar bursa, anteriorly by perplasia of the infrapatellar fat pad at excision, a the patellar tendon and posteriorly by the femoral procedure resulting in symptomatic relief in his se- ries of 21 patients (29).
    [Show full text]
  • Variant Attachments of the Anterior Horn of the Medial Meniscus
    Folia Morphol. Vol. 62, No. 3, pp. 291–292 Copyright © 2003 Via Medica S H O R T C O M M U N I C A T I O N ISSN 0015–5659 www.fm.viamedica.pl Variant attachments of the anterior horn of the medial meniscus Marian Jakubowicz, Wojciech Ratajczak, Andrzej Pytel Department of Anatomy, University of Medical Sciences, Poznań, Poland [Received 6 January 2003; Accepted 20 May 2003] The purpose of this study was to analyse the occurrence of variants of anoma- lous insertions of the anterior horn of the medial meniscus in human knee joints. The study was carried out on 78 human lower limbs of both sexes (42 males and 36 females). Out of 78 knee joints, 10 knee joints (12.82%) presented atypical attachments of the anterior horn of the medial meniscus. In 9 cases we found that the anterior horn of the medial meniscus was attached to the transverse ligament of the knee and in 1 case it was attached to the coronary ligament. In the remaining cases the anterior horn of the medial meniscus was attached to the anterior intercondylar area of the tibia. key words: knee joint, transverse ligament, coronary ligament INTRODUCTION left). Our anatomical findings were classified into the The anterior horn of the medial meniscus (AHMM) following categories, with reference to the criteria is attached, through the meniscal insertional liga- described by Ikeuchi [2]: the transverse ligament type, ments, to the anterior intercondylar area of the tibia where the AHMM was attached to the transverse anteriorly to the attachment of the anterior cruciate ligament of the knee, and the coronary ligament type, ligament (ACL).
    [Show full text]
  • Fat Pads As a Cause of Adolescent Anterior Knee Pain
    Current Concept Review Fat Pads as a Cause of Adolescent Anterior Knee Pain Mitchell G. Foster, BS1; Jerry Dwek, MD2; James D. Bomar, MPH2; Andrew T. Pennock, MD2 1University of California, San Diego, Department of Orthopedic Surgery, San Diego, CA; 2Rady Children’s Hospital, San Diego, Department of Orthopedic Surgery, San Diego, CA Abstract: Anterior knee pain is one of the most frequently encountered symptoms in pediatric sports medicine. The fat pad is a structure with mounting evidence supporting its dynamic involvement in many pathological states in the anterior knee. There are three peripatellar fat pads that occupy much of the extrasynovial space of the knee. This review explores the anatomy, innervation, vasculature, function, imaging, and pathology of these fat pads. Fat pad pathology is likely underestimated given the limited literature on such disease in the pediatric population. In particular, the prefemoral fat pad is the least described of the fat pads with only a few reports detailing chronic pathological pro- cesses. To highlight the relevance of the fat pad, particularly in the pediatric population, we describe an atypical case of a self-limiting acute prefemoral fat pad impingement due to a hyperextension injury in a young athlete. Key Concepts: • The three peripatellar fat pads of the anterior knee, although often overlooked, are important nociceptive struc- tures with robust vasculature that undergo dynamic changes in many pathological states. • Fat pad impingement is often described as a chronic process predominantly involving the infrapatellar fat pad; however, acute impingement is also clinically significant and all three of the fat pads may be implicated in disease.
    [Show full text]
  • Synovial Joints • Typically Found at the Ends of Long Bones • Examples of Diarthroses • Shoulder Joint • Elbow Joint • Hip Joint • Knee Joint
    Chapter 8 The Skeletal System Articulations Lecture Presentation by Steven Bassett Southeast Community College © 2015 Pearson Education, Inc. Introduction • Bones are designed for support and mobility • Movements are restricted to joints • Joints (articulations) exist wherever two or more bones meet • Bones may be in direct contact or separated by: • Fibrous tissue, cartilage, or fluid © 2015 Pearson Education, Inc. Introduction • Joints are classified based on: • Function • Range of motion • Structure • Makeup of the joint © 2015 Pearson Education, Inc. Classification of Joints • Joints can be classified based on their range of motion (function) • Synarthrosis • Immovable • Amphiarthrosis • Slightly movable • Diarthrosis • Freely movable © 2015 Pearson Education, Inc. Classification of Joints • Synarthrosis (Immovable Joint) • Sutures (joints found only in the skull) • Bones are interlocked together • Gomphosis (joint between teeth and jaw bones) • Periodontal ligaments of the teeth • Synchondrosis (joint within epiphysis of bone) • Binds the diaphysis to the epiphysis • Synostosis (joint between two fused bones) • Fusion of the three coxal bones © 2015 Pearson Education, Inc. Figure 6.3c The Adult Skull Major Sutures of the Skull Frontal bone Coronal suture Parietal bone Superior temporal line Inferior temporal line Squamous suture Supra-orbital foramen Frontonasal suture Sphenoid Nasal bone Temporal Lambdoid suture bone Lacrimal groove of lacrimal bone Ethmoid Infra-orbital foramen Occipital bone Maxilla External acoustic Zygomatic
    [Show full text]