Nitric Oxide's Role in Biology

Total Page:16

File Type:pdf, Size:1020Kb

Nitric Oxide's Role in Biology 2008 ANNUAL MEETING THEMATIC OVERVIEWS INSIDE August 2007 Nitric Oxide’s Role in Biology American Society for Biochemistry and Molecular Biology Promoting Understanding of the Molecular Nature of Life Processes The Society’s purpose is to advance the science of biochemistry and molecular biology through publication of scientific and educational journals (the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research), organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific workforce. www.asbmb.org contents AUGUST 2007 ON THE COVER: Nitric oxide affects many organs, including the heart. society news Jonathan S. Stamler has spent much of his career explaining 2 President’s Message how this molecule works. 6 Washington Update 28 7 Assessing Minority Programs 8 Ten ASBMB Members Elected to Academy 9 Retrospective: John M. Buchanann 2008 meeting overview 12 Lipid Signaling and Metabolism 14 Signal Transduction etrospective: ohn M. Buchanann 16 RNA-Mediated Gene Expression 917-2007) 9 18 Cell and Organelle Dynamics science focus 28 Jonathan S. Stamler: Nitric Oxide’s Role in Biology and Medicine departments 3 Letter to the Editor 4 News from the Hill 10 Member Spotlight 20 Career Insights Educatingg Non Scientists 22 22 Education and Training Educating Non-Scientists 22 Postdoc Brain Circulation 24 26 BioBits resources 31 For Your Lab 32 Career Opportunities 33 Scientific Meeting Calendar Replicating Damaged DNA 26 August 2007 ASBMB Today 1 president’smessage A monthly publication of The American Society for An ASBMB delegation Biochemistry and Molecular Biology led by Heidi Hamm is Officers currently in China. Heidi E. Hamm President Gregory A. Petsko President-Elect Mark A. Lemmon Secretary The President’s Merle S. Olson Treasurer Message will return Council Members in the September Alan Hall Kuan-Teh Jeang issue of the magazine. Suzanne R. Pfeffer Linda J. Pike John D. Scott Joan A. Steitz Kevin Struhl James A. Wells Ex-Officio Members Ellis Bell Chair, Education and Professional Development Committee Laurie S. Kaguni Chair, Meeting Committee George Hill Chair, Minority Affairs Committee Kendall J. Blumer Anna Marie Pyle Co-chairs, 2008 Program Committee Mary J. C. Hendrix Chair, Public Affairs Advisory Committee Robert E. Rhoads Chair, Publications Committee Herbert Tabor Editor, JBC Ralph A. Bradshaw A. L. Burlingame Co-editors, MCP Edward A. Dennis Editor, JLR ASBMB Today Editorial Advisory Board Alex Toker Chair Mike Autry Greg P. Bertenshaw Craig E. Cameron Irwin Fridovich Richard W. Hanson Elizabeth A. Komives Bettie Sue Masters Luke A. O’Neill Duanqing Pei Carol C. Shoulders Robert D. Wells ASBMB Today Nicole Kresge Editor [email protected] Pat Pages Science Writer [email protected] Nancy J. Rodnan Director of Publications [email protected] Barbara Gordon Executive Director [email protected] Magazine design & production: Amy Phifer For information on advertising contact FASEB AdNet at 800-433-2732 ext. 7157 or 301-634-7157, or E-mail [email protected]. www.asbmb.org August 2007 firstletterssecondto the editor words things: I wanted to have children ing uncertainty and a never ending Leaving and enjoy time with them, I wanted instability in an academic career that to have enough money to send my never stops demanding all of her Academic kids to college and retire at a decent time. Basically she sees her inter- age, and I did not want to work in a est in science as incompatible with Science profession that required me to work academic research. To the Editor: seven days a week.” The National Institutes of Health In the May 2007 issue of ASBMB The young woman who wrote (NIH) funding crisis, the poor job Today, there was a profile of ay oung this article identifies several critical prospects in academic science, the woman investigator [Rashmi Nem- points. One is of course the issue permanent postdocs, and the family- ade, Career Insights, pages 18-19] we are all familiar with, the issue of unfriendliness of the profession are a who, like so many young women, has balancing family and work. dangerous combination. left academic science for an “alterna- Second, there is a strong sense With even senior investigators tive career.” In the article she says: of reluctance to embark on a career losing grants and salaries, with jobs “I was disenchanted by the academic that requires long hours and poor few and far between and often dis- tant from family, with the demands lifestyle, i.e. lots of hard work and remuneration. “I want to have of our institutions on our time even personal sacrifice for risky gains. I enough money to send my kids to greater, really, why would anyone looked around my lab and found college and retire at a decent age,” who wants to be involved in science that even the brightest, hardest she writes. Now, I will argue that choose academe? I fear that this working, dedicated, and well pub- anyone who has achieved a Ph.D. effect will disproportionately affect lished scientists were, after at least a and a postdoc is not afraid of hard work per se. But clearly this young under-represented groups in science, year or two of interviewing, landing woman saw no end to it and no making the gap seem more insur- academic positions at institutions way to accomplish her life goals in mountable. I have already seen an that were not their first choices. an academic setting. Bright people increase in women graduate students My colleagues that got academic with doctoral education have lots of deciding against academic postdocs positions had to work seven days a other ways to make money than on because they feel it is too stressful on week trying to prove to their new partial-year salaries at a university; top of everything else. department members that they the brightest are perhaps the least Therefore, I think that the women were worthy of the appointment. In likely to stay. in science groups need to address the long run, I didn’t want to work Third and most disturbing to me the hypothesis that the funding crisis that hard for that long and make so is her perception of academic science in biomedical science is going to many personal sacrifices, i.e. time as high risk and low return. For long disproportionately affect recruitment with family for a last choice institu- hours and hard work, she sees the and retention of women at all levels tion and a low salary. likelihood of ending up in a place in academic institutions. “The real turning point came when where she wants to work as low, she Susan L. Forsburg I realized that children could, sees little financial reward and a lot University of Southern should, and would be a part of my of financial risk, and she sees fund- California future. Both my husband, who is not a scientist, and I had demand- ing careers and had not planned on Tell Us What You Think having children, but the feeling was We appreciate receiving letters that are suitable for publication growing, and I was worried about regarding issues of importance or comment on articles appearing how we would balance family and in ASBMB Today. Letters should be sent to the editor at the work. I did a lot of soul searching address found in the masthead. Letters must be signed and must contain the writer’s addresss and telephone number. and looked deeply and seriously The editor reserves the right to edit all letters. into my future and realized a few August 2007 ASBMB Today 3 news from the hill 2008 NIH Funding Advances in House, Senate BY PETER FARNHAM arly July saw progress on National Institutes of EHealth (NIH) funding for FY 2008 in both House and Senate—but the amount of money involved is not what the biomedical research community had been anticipating. On July 11, the House Appropriations Committee approved a total of $29.65 billion for NIH, an increase of match biomedical inflation, expected to be 3.7% this year. $750 million (2.6%) above FY 2007 and $1.029 billion Other major groups that are not supporting the bill are the (3.6%) above the President’s request. But the committee American Heart Association, the American Cancer Society, also kept the provision contained in the bill approved by and Research!America. the subcommittee on Labor, Health and Human Services, Education and Related Agencies (L/HHS) to increase the Meanwhile, in the Senate… amount of the transfer from NIH to the Global HIV/AIDS The Senate Appropriations Subcommittee on L/HHS did fund from $99 million this year to $300 million in FY 2008. slightly better for NIH funding during its June 19 markup, NIH thus receives only $549 million under the House bill, recommending that NIH receive an additional $800 million less than a 2% increase. in FY 2008, a 2.8% increase (after a $200 million transfer to Appropriations Committee Chairman David Obey (D-WI) the Global AIDS program). The bill was approved by the full tried to put the best face on the proposal, commenting that Senate appropriations committee on June 21. it provides $1 billion more than the President requested and Chairman Tom Harkin (D-IA) pointed out during the that this will allow NIH to increase (by 545) the number of markup that the House L/HHS subcommittee had $2 new and competing research grants funded in FY 2008. He billion more to distribute among its programs than he did also noted that the $620 million increase NIH received in FY (due to the vagaries of the appropriations process, which 2007 is allowing NIH to support important initiatives, as well proceed largely on parallel but separate tracks in the as an additional 992 research grants.
Recommended publications
  • A Proposed Method for Noninvasive Assessment of Endothelial Damange Kirsten Menn
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 11-15-2006 A Proposed Method for Noninvasive Assessment of Endothelial Damange Kirsten Menn Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Menn, Kirsten, "A Proposed Method for Noninvasive Assessment of Endothelial Damange" (2006). Yale Medicine Thesis Digital Library. 272. http://elischolar.library.yale.edu/ymtdl/272 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. A PROPOSED METHOD FOR NONINVASIVE ASSESSMENT OF ENDOTHELIAL DAMAGE A Thesis Submitted to the Yale University School of Medicine in Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine By Kirsten Alexandra Menn 2006 Abstract A PROPOSED METHOD FOR NONINVASIVE ASSESSMENT OF ENDOTHELIAL DAMAGE Kirsten A. Menn, Robert B. Schonberger, William L. Worden, Kaveh Shahmohammadi, Tyler J. Silverman, Robert Stout, Kirk Shelley, David G. Silverman, Department of Anesthesiology, Yale University, School of Medicine, New Haven, CT. Transdermal microvascular studies of endothelial cell function have typically used iontophoresis to facilitate acetylcholine absorption, but iontophoresis introduces an important confounding stimulus that can alter the behavior of the microvasculature. This study examines a non-iontophoretic technique for transdermal microvascular studies using acetylcholine and nitroglycerin and demonstrates a relatively impaired vasodilatory response to these substances in a population with known microvascular pathology.
    [Show full text]
  • View, the Catalytic Center of Bnoss Is Almost Identical to Mnos Except That a Conserved Val Near Heme Iron in Mnos Is Substituted by Iie[25]
    STUDY OF ELECTRON TRANSFER THROUGH THE REDUCTASE DOMAIN OF NEURONAL NITRIC OXIDE SYNTHASE AND DEVELOPMENT OF BACTERIAL NITRIC OXIDE SYNTHASE INHIBITORS YUE DAI Bachelor of Science in Chemistry Wuhan University June 2008 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVELAND STATE UNIVERSITY July 2016 We hereby approve this dissertation for Yue Dai Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry Degree for the Department of Chemistry and CLEVELAND STATE UNIVERSITY’S College of Graduate Studies by Dennis J. Stuehr. PhD. Department of Pathobiology, Cleveland Clinic / July 8th 2016 Mekki Bayachou. PhD. Department of Chemistry / July 8th 2016 Thomas M. McIntyre. PhD. Department of Cellular and Molecular Medicine, Cleveland Clinic / July 8th 2016 Bin Su. PhD. Department of Chemistry / July 8th 2016 Jun Qin. PhD. Department of Molecular Cardiology, Cleveland Clinic / July 8th 2016 Student’s Date of Defense: July 8th 2016 ACKNOWLEDGEMENT First I would like to express my special appreciation and thanks to my Ph. D. mentor, Dr. Dennis Stuehr. You have been a tremendous mentor for me. It is your constant patience, encouraging and support that guided me on the road of becoming a research scientist. Your advices on both research and life have been priceless for me. I would like to thank my committee members - Professor Mekki Bayachou, Professor Bin Su, Dr. Thomas McIntyre, Dr. Jun Qin and my previous committee members - Dr. Donald Jacobsen and Dr. Saurav Misra for sharing brilliant comments and suggestions with me. I would like to thank all our lab members for their help ever since I joint our lab.
    [Show full text]
  • Protein S-Nitrosylation: Methods of Detection and Cellular Regulation
    Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD Dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v ABSTRACT Protein S-Nitrosylation: Methods of Detection and Cellular Regulation by Michael Tcheupdjian Forrester Department of Biochemistry Duke University Date:_______________________ Approved: ___________________________ Jonathan S. Stamler, MD (Supervisor) ___________________________ Irwin Fridovich, PhD ___________________________ K. V. Rajagopalan, PhD ___________________________ Dennis J. Thiele, PhD ___________________________ Eric J. Toone, PhD An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in the Department of Biochemistry in the Graduate School of Duke University 2009 i v Copyright by Michael T. Forrester 2009 Abstract Protein S-nitrosylation—the post-translational modification of cysteine thiols into S-nitrosothiols—is a principle mechanism of nitric oxide-based signaling. Studies have demonstrated myriad roles for S-nitrosylation in organisms from bacteria to humans, and recent efforts have begun to elucidate how this redox-based modification is regulated during physiological and pathophysiological conditions. This doctoral thesis is focused on the 1) analysis of existing methodologies for the detection of protein S-nitrosylation; 2) development of new methodologies for the detection of protein S-nitrosylation and 3) discovery of novel enzymatic mechanisms by which S-nitrosylation is regulated in vivo.
    [Show full text]
  • Electrochemical Measurement of Nitric Oxide from Biological Systems
    ELECTROCHEMICAL MEASUREMENT OF NITRIC OXIDE FROM BIOLOGICAL SYSTEMS Rebecca Anne Hunter A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry (Analytical Chemistry). Chapel Hill 2014 Approved by: Mark H. Schoenfisch Royce W. Murray James W. Jorgenson Bruce A. Cairns Robert Maile © 2014 Rebecca Anne Hunter ALL RIGHTS RESERVED ii ABSTRACT REBECCA ANNE HUNTER: Electrochemical Detection of Nitric Oxide from Biological Systems (Under the direction of Mark H. Schoenfisch) Nitric oxide (NO) is known to be involved in a number of physiological processes, including the immune response. As such, its role in severe infection and sepsis has been investigated, but previous measurement techniques have relied on complicated instrumentation or the quantification of NO byproducts (e.g., nitrate and nitrite). Herein, the fabrication of a microfluidic amperometric sensor for the direct detection of NO in whole blood is described. These sensors were used to evaluate the potential of NO and nitrosothiols (a stable transporter) as prognostic and/or diagnostic biomarkers for infection and sepsis. The microfluidic devices facilitated the selective electrochemical measurement of NO in small volumes of blood at the point-of-care, with adequate sensitivity and limits of detection achieved in buffer, wound fluid, and whole blood. A green (530 nm) light-emitting diode was coupled to the device to enable photolysis of S-nitrosothiol species with subsequent NO detection. While inefficient photolysis prevented the measurement of nitrosothiols in whole blood, detection in serum was achieved.
    [Show full text]
  • Nitric Oxide: a Key Regulator of Myeloid Inflammatory Cell Apoptosis
    Cell Death and Differentiation (2003) 10, 418–430 & 2003 Nature Publishing Group All rights reserved 1350-9047/03 $25.00 www.nature.com/cdd Review Nitric oxide: a key regulator of myeloid inflammatory cell apoptosis Introduction EL Taylor*,1, IL Megson2, C Haslett1 and AG Rossi1 The free radical nitric oxide (NO) was first discovered as an 1 Centre for Inflammation Research, Rayne Laboratory, University of Edinburgh, endogenous vasodilator released from the endothelium to Medical School, Teviot Place, Edinburgh EH8 9AG, UK regulate vascular tone.1 However, it is now known that NO is a 2 Centre for Cardiovascular Science, University of Edinburgh, Hugh Robson key mediator in a great number of physiological and Building, George Square, Edinburgh EH8 9XD, UK pathophysiological processes (see Quinn).2 This ubiquitous * Corresponding author: EL Taylor, Centre for Inflammation Research, Rayne Laboratory, University of Edinburgh, Medical School, Teviot Place, Edinburgh signalling molecule can regulate the rate of apoptosis, or EH8 9AG, UK. Tel.: +44 131 651 1323; Fax: +44 131 650 4384; programmed cell death, in many cell types, including human E-mail: [email protected] inflammatory cells. Whether or not cells undergo apoptosis depends on the net balance of a large number of pro- versus Received 30.4.02; revised 29.8.02; accepted 2.9.02 antiapoptotic factors. Studies have revealed that NO Edited by G. Melino has both pro and antiapoptotic properties, depending largely on the concentration and flux of NO, and the cell type under scrutiny (for reviews, see Nicotera et al.3 and Kim et Abstract al.4).
    [Show full text]
  • Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics
    Review Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics Joel Mintz 1,†, Anastasia Vedenko 2,†, Omar Rosete 3 , Khushi Shah 4, Gabriella Goldstein 5 , Joshua M. Hare 2,6,7 , Ranjith Ramasamy 3,6,* and Himanshu Arora 2,3,6,* 1 Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA; [email protected] 2 John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] (A.V.); [email protected] (J.M.H.) 3 Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; [email protected] 4 College of Arts and Sciences, University of Miami, Miami, FL 33146, USA; [email protected] 5 College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA; [email protected] 6 The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA 7 Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA * Correspondence: [email protected] (R.R.); [email protected] (H.A.) † These authors contributed equally to this work. Abstract: Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumori- Citation: Mintz, J.; Vedenko, A.; genic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the Rosete, O.; Shah, K.; Goldstein, G.; level of production, the oxidative/reductive (redox) environment in which this radical is generated, Hare, J.M; Ramasamy, R.; Arora, H.
    [Show full text]
  • Effect of Cyanide by Sodium Nitroprusside (SNP)
    Journal of Seed Science, v.41, n.1, p.086-096, 2019 http://dx.doi.org/10.1590/2317-1545v41n1213725 Effect of cyanide by sodium nitroprusside (SNP) application on germination, antioxidative system and lipid peroxidation of Senna macranthera seeds under saline stress1 Aparecida Leonir da Silva2*, Daniel Teixeira Pinheiro3, Eduardo Euclydes de Lima e Borges4, Laércio Junio da Silva3, Denise Cunha Fernandes dos Santos Dias3 ABSTRACT – The effects of NO donors on germination under saline stress have been much investigated for many species, however, there are reports that the effect caused by donors are effects of cyanide present. The aim of this study was to evaluate the effects of sodium nitroprusside (SNP) on germination, antioxidative system and lipid peroxidation of Senna macranthera seeds under saline stress. The osmotic potentials of -0.4 and -0.5 MPa of NaCl were used, as well as the concentration of 100 μM of sodium nitroprusside, inactive sodium nitroprusside. Germination rate, imbibition curves, antioxidant enzyme activity, lipid peroxidation, and protein content were evaluated. Similar effects were observed for sodium nitroprusside and inactive sodium nitroprusside, indicating that these effects were related to the release of the cyanide present in sodium nitroprusside. The sodium nitroprusside (SNP) improves the germination of Senna macranthera seeds under salt stress conditions, through release of cyanide. The cyanide favored germination, reducing lipid peroxidation and increasing the activity of the antioxidant enzymes. Index terms: antioxidant enzymes, NaCl, nitric oxide, salinity. Efeito do cianeto via aplicação de nitroprussiato de sódio (SNP) na germinação, no sistema antioxidativo e na peroxidação lipídica de sementes de Senna macranthera sob estresse salino RESUMO – Os efeitos dos doadores de NO na germinação sob estresse salino têm sido muito investigados para muitas espécies, entretanto, há relatos de que o efeito causado pelos doadores são efeitos do cianeto presente.
    [Show full text]
  • From the Cover Contents
    July 26, 2011 u vol. 108 u no. 30 u 12187–12560 Cover image: Pictured is a Tasmanian devil (Sarcophilus harrisii), a carnivorous marsupial whose numbers are dwindling due to an infectious facial cancer called Devil Facial Tumor Disease. Webb Miller et al. sequenced the genome of devils from northwest and south- east Tasmania, spanning the range of this threatened species on the Australian island. The authors report that the sequences reveal a worrisome dearth of genetic diversity among devils, suggesting the need for genetically characterized stocks to help breed hardier devils that might be better equipped to fight diseases. See the article by Miller et al. on pages 12348–12353. Image courtesy of Stephan C. Schuster. From the Cover 12348 Decoding the Tasmanian devil genome 12283 Illuminating chromosomal architecture 12295 Symmetry of cultured cells 12319 Caloric restriction and infertility 12366 Genetic diversity among ants Contents COMMENTARIES 12189 Methyl fingerprinting of the nucleosome reveals the molecular mechanism of high-mobility group THIS WEEK IN PNAS nucleosomal-2 (HMGN2) association Catherine A. Musselman and Tatiana G. Kutateladze See companion article on page 12283 12187 In This Issue 12191 Examining the establishment of cellular axes using intrinsic chirality LETTERS (ONLINE ONLY) Jason C. McSheene and Rebecca D. Burdine See companion article on page 12295 E341 Difference between restoring and predicting 3D 12193 Secrets of palm oil biosynthesis revealed structures of the loops in G-protein–coupled Toni Voelker receptors by molecular modeling See companion article on page 12527 Gregory V. Nikiforovich, Christina M. Taylor, Garland R. Marshall, and Thomas J. Baranski E342 Reply to Nikiforovich et al.: Restoration of the loop regions of G-protein–coupled receptors Dahlia A.
    [Show full text]
  • REAL-TIME IMAGING of NITRIC OXIDE (NO) SIGNALS DERIVED from DIFFERENTIALLY TARGETED ENDOTHELIAL NITRIC OXIDE SYNTHASES (Enos) USING GENETICALLY ENCODED BIOSENSORS
    T.C. BIRUNI UNIVERSITY INSTITUTE OF GRADUATE EDUCATION DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS MOLECULAR AND MEDICAL GENETICS GRADUATE PROGRAM REAL-TIME IMAGING OF NITRIC OXIDE (NO) SIGNALS DERIVED FROM DIFFERENTIALLY TARGETED ENDOTHELIAL NITRIC OXIDE SYNTHASES (eNOS) USING GENETICALLY ENCODED BIOSENSORS Mete Emir ÖZGÜRSES ADVISOR Asst. Prof. Dr. Emrah EROĞLU July, 2020 T.C. BIRUNI UNIVERSITY INSTITUTE OF GRADUATE EDUCATION DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS MOLECULAR AND MEDICAL GENETICS GRADUATE PROGRAM REAL-TIME IMAGING OF NITRIC OXIDE (NO) SIGNALS DERIVED FROM DIFFERENTIALLY TARGETED ENDOTHELIAL NITRIC OXIDE SYNTHASES (eNOS) USING GENETICALLY ENCODED BIOSENSORS Mete Emir ÖZGÜRSES ADVISOR Asst. Prof. Dr. Emrah EROĞLU July, 2020 III DECLARATION I declare that I have designed and performed all experiments in the current study entitled “Real-time imaging of nitric oxide (NO) signals derived from differentially targeted endothelial nitric oxide synthases (eNOS) using genetically encoded biosensors” according to good scientific practices. I obtained all the information contained in this thesis under academic and ethical rules. All the information I have used from secondary literature has been respectively referenced. I also declare that have not violated any patents and copyrights during the preparation and writing of this thesis. Mete Emir Ozgurses IV To all human being, V ACKNOWLEDGEMENT I would like to express my deepest gratitude to everyone who has supported me through this thesis. Firstly, I would like to thank Asst. Prof. Emrah Eroğlu for allowing me to work in his lab. He has guided me throughout the project both by challenging me to be more competent in science and by sharing his instructive ideas.
    [Show full text]
  • SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment
    EM AD IA C S A C I A E PONTIFICIAE ACADEMIAE SCIENTIARVM ACTA 24 I N C T I I F A I R T V N Edited by Werner Arber M O P Joachim von Braun Marcelo Sánchez Sorondo SCIENCE and SUSTAINABILITY Impacts of Scientific Knowledge and Technology on Human Society and Its Environment Plenary Session | 25-29 November 2016 Casina Pio IV | Vatican City LIBRERIA EDITRICE VATICANA VATICAN CITY 2020 Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment Pontificiae Academiae Scientiarvm Acta 24 The Proceedings of the Plenary Session on Science and Sustainability. Impacts of Scientific Knowledge and Technology on Human Society and its Environment 25-29 November 2016 Edited by Werner Arber Joachim von Braun Marcelo Sánchez Sorondo EX AEDIBVS ACADEMICIS IN CIVITATE VATICANA • MMXX The Pontifical Academy of Sciences Casina Pio IV, 00120 Vatican City Tel: +39 0669883195 • Fax: +39 0669885218 Email: [email protected] • Website: www.pas.va The opinions expressed with absolute freedom during the presentation of the papers of this meeting, although published by the Academy, represent only the points of view of the participants and not those of the Academy. ISBN 978-88-7761-113-0 © Copyright 2020 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, recording, pho- tocopying or otherwise without the expressed written permission of the publisher. PONTIFICIA ACADEMIA SCIENTIARVM LIBRERIA EDITRICE VATICANA VATICAN CITY The climate is a common good, belonging to all and meant for all.
    [Show full text]
  • A Fundamental Role for the Nitric Oxide-G-Kinase Signaling Pathway in Mediating Intercellular Ca2+ Waves in Glia
    The Journal of Neuroscience, March 1, 2000, 20(5):1767–1779 A Fundamental Role for the Nitric Oxide-G-Kinase Signaling Pathway in Mediating Intercellular Ca2؉ Waves in Glia Nicholas J. Willmott, Kay Wong, and Anthony J. Strong Department of Clinical Neuroscience, Institute of Psychiatry, King’s College London, London SE5 8AF In this study, we highlight a role for the nitric oxide–cGMP- NO to cells, indicating that NO also induces Ca 2ϩ influx in glia. dependent protein kinase (NO–G-kinase) signaling pathway in Mechanical stress of individual glial cells resulted in an increase glial intercellular Ca 2ϩ wave initiation and propagation. Addi- in intracellular NO in target and neighboring cells and intercel- 2ϩ tion of the NO donor molsidomine (100–500 ␮M) or puffing lular Ca waves, which were NO, cGMP, and G-kinase depen- aqueous NO onto primary glial cell cultures evoked an increase dent, because incubating cells with nitric oxide synthase, guan- 2ϩ 2ϩ in [Ca ]i in individual cells and also local intercellular Ca ylate cyclase, and G-kinase inhibitors, or NO scavengers, 2ϩ ⌬ 2ϩ 2ϩ waves, which persisted after removal of extracellular Ca . reduced [Ca ]i and the rate of Ca wave propagation in High concentrations of ryanodine (100–200 ␮M) and antago- these cultures. Results from this study suggest that NO–G- nists of the NO–G-kinase signaling pathway essentially abro- kinase signaling is coupled to Ca 2ϩ mobilization and influx in 2ϩ gated the NO-induced increase in [Ca ]i , indicating that NO glial cells and that this pathway plays a fundamental role in the mobilizes Ca 2ϩ from a ryanodine receptor-linked store, via the generation and propagation of intercellular Ca 2ϩ waves in glia.
    [Show full text]
  • Identification of S-Nitrosylation Motifs by Site-Specific Mapping of the S-Nitrosocysteine Proteome in Human Vascular Smooth Muscle Cells
    Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells Todd M. Greco*, Roberto Hodara*, Ioannis Parastatidis*, Harry F. G. Heijnen†, Michelle K. Dennehy‡, Daniel C. Liebler‡, and Harry Ischiropoulos*§ *Stokes Research Institute and Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104; †Thrombosis and Haemostasis Laboratory, Department of Cell Biology, University Medical Center Utrecht, and Institute for Biomembranes, 3584 CH, Utrecht, The Netherlands; and ‡Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232 Edited by Louis J. Ignarro, University of California School of Medicine, Los Angeles, CA, and approved March 22, 2006 (received for review January 27, 2006) S-nitrosylation, the selective modification of cysteine residues in critical roles for nitric oxide, the targets of S-nitrosylation in proteins to form S-nitrosocysteine, is a major emerging mechanism vascular smooth muscle cells are largely unknown. To that end, by which nitric oxide acts as a signaling molecule. Even though proteomic approaches are highly informative in providing a global nitric oxide is intimately involved in the regulation of vascular assessment of the modified proteins in cells and tissues. smooth muscle cell functions, the potential protein targets for Proteomic approaches based on the biotin-switch method have nitric oxide modification as well as structural features that underlie been used to identify potential targets of S-nitrosylation in various the specificity of protein S-nitrosocysteine formation in these cells model systems including murine brain tissue (15) and RAW 264.7 remain unknown.
    [Show full text]