Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information Matthew C

Total Page:16

File Type:pdf, Size:1020Kb

Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information Matthew C Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information Matthew C. Good, et al. Science 332, 680 (2011); DOI: 10.1126/science.1198701 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this infomation is current as of May 25, 2011 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/332/6030/680.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2011/05/04/332.6030.680.DC1.html on May 25, 2011 This article cites 57 articles, 28 of which can be accessed free: http://www.sciencemag.org/content/332/6030/680.full.html#ref-list-1 This article appears in the following subject collections: Cell Biology http://www.sciencemag.org/cgi/collection/cell_biol www.sciencemag.org Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2011 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS. REVIEW used in evolution or engineering to change sig- naling behaviors. Scaffold Proteins: Versatile Tools to Scaffold Proteins: Hubs for Controlling Assemble Diverse Pathways Scaffolds are extremely diverse proteins, many of the Flow of Cellular Information which are likely to have evolved independently. Nonetheless they are conceptually related, in that Matthew C. Good,1* Jesse G. Zalatan,1 Wendell A. Lim1,2,3† they are usually composed of multiple modular interaction domains or motifs (see Box 1A for an example). Their exact domain composition and The spatial and temporal organization of molecules within a cell is critical for coordinating order, however, can vary widely depending on the many distinct activities carried out by the cell. In an increasing number of biological the pathways that they organize. signaling processes, scaffold proteins have been found to play a central role in physically In some cases, homologous individual inter- assembling the relevant molecular components. Although most scaffolds use a simple tethering action motifs can be found in scaffolds associated mechanism to increase the efficiency of interaction between individual partner molecules, with particular signaling proteins. For example, these proteins can also exert complex allosteric control over their partners and are themselves the AKAPs (A-kinase anchoring proteins), which the target of regulation. Scaffold proteins offer a simple, flexible strategy for regulating selectivity in pathways, shaping output behaviors, and achieving new responses from preexisting 1Department of Cellular and Molecular Pharmacology, Uni- signaling components. As a result, scaffold proteins have been exploited by evolution, versity of California, San Francisco, CA 94158, USA. 2Center for pathogens, and cellular engineers to reshape cellular behavior. Systems and Synthetic Biology, University of California, San Francisco, CA 94158, USA. 3Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA. ammalian cells contain an estimated of pathways that they coordinate, the ways that *Present address: Department of Molecular and Cellular Bi- ology, University of California, Berkeley, CA 94720, USA. 1billionindividualproteinmolecules, they shape signaling responses, their biochemical †To whom correspondence should be addressed. E-mail: on May 25, 2011 M with as many as 10% of these involved and structural mechanisms, and how they are [email protected] in signal transduction (1). Given this enormous number of mole- cules, it seems remarkable that cells A “Well-mixed” cell B Intracellular signaling scaffolds can accurately process the vast ar- Spatial organization ray of signaling information they Pheromone INPUT EGF constantly receive. How can sig- Compartmentalization naling proteins find their correct (organelle) GPCR Receptor partners—and avoid their incorrect ␥ partners—among so many other ␣ ␤ Ste20 Ras www.sciencemag.org proteins? Colocalization Ste11 MAPKKK Raf Aprinciplethathasemerged Ste5 KSR over the past two decades is that Scaffold-mediated Yeast Ste7 MAPKK MEK MammalianMamma cells achieve specificity in their complex assembly mating ERK response MAPK Erk pathway molecular signaling networks by Fus3 organizing discrete subsets of pro- C teins in space and time (Fig. 1A) Cell-cell signaling junctions Mating Proliferation Downloaded from (2–4). For example, functionally OUTPUT interacting signaling components can be sequestered into specific AMPA regulatory NMDA proteins (TARPs, subcellular compartments (e.g., receptors AMPA organelles) or at the plasma mem- e.g. stargazin) receptors D Assembly-line processes brane. Another solution is to assem- ble functionally interacting proteins Unfolded into specific complexes. More than protein PDZ PDZ PDZ SH3-GK PSD-95 HOP 15 years ago, the first scaffold pro- NeuronalNeuronal sysynapse Hsp70 Sequentialquential teins were discovered—proteins chaperone that coordinate the physical as- Other reactions Hsp90 Folded sembly of components of a sig- Downstream scaffolds protein naling pathway or network (5–10). signaling effectors Actin cytoskeleton These proteins have captured the (e.g. nNOS) attention of the signaling field be- Fig. 1. Scaffold proteins organize cellular information flow. (A)Spatialorganizationisnecessary to achieve high-fidelity cause they appear to provide a intracellular information transfer. Proteins can be assembled into specificcomplexesbycompartmentalization simple and elegant solution for (organelle targeting), by membrane localization, and by scaffold proteins. (B)Intracellularsignalingpathwaysoftenuse determining the specificity of in- scaffold proteins. Canonical examples include Ste5, essential to the yeast mating MAPK pathway, and KSR, which formation flow in intracellular directs signaling in the mammalian Ras-Raf-MEK-MAPK pathway. (C)Scaffoldproteinsalsoplayanimportantrolein networks (2, 11, 12). We review organizing cell-cell communication junctions, such as neuronal synapses.ThePDZscaffold,PSD-95,controlsNMDAand our current understanding of these AMPA glutamate receptor targeting to the synapse. (D)Assembly-lineprocessessuchas protein folding use scaffold organizational proteins: the types proteins. The HOP protein promotes transfer of unfolded proteins between Hsp70 and Hsp90 chaperones. 680 6 MAY 2011 VOL 332 SCIENCE www.sciencemag.org REVIEW A Modular interactions of Ste5 scaffold protein Three-tiered kinase cascade Gβ (Ste4) Fus3 PIP2 Ste11 Ste7 Fus3 Plasma Heterotrimeric MAPK Lipid MAPKKK MAPKK MAPK membrane G protein (regulatory) (catalytic) LIGANDS Ste5 + + + + + + + + (917 aa) N C - - - - - - - - - BINDING (463-514) DOMAINS Ste11-BD PM RING Fus3-BD PH Ste5ms (VWA domain) (45-64) (177-229) (288-315) (388-518) (593-786) Input Core signaling regulated Allosteric pathway Membrane recruitment Tether MAPK cascade coactivation of Fus3 Higher-order Target of Cdk Mediates feedback FUNCTION regulation negative regulation phosph. of Ste5 by Fus3 on May 25, 2011 B Core steps of signal propagation C Higher-order regulatory mechanisms Feedback 2 Membrane Cdk negative regulation Morphological 1 Receptor recruitment 4 MAPK of pathway activation phosphorylation response (% of cells schmooing) activation Tether MAPK activation of Ste5 α-factor 3 100 cascade Ste5 INPUT Phosph. Gβγ Ste20 Gβγ Ste20 80 wild-type blocks 60 α βγ βγ βγ binding P Ste11 40 G G Ste20 G Ste20 G Ste20 P 20 www.sciencemag.org P P P Ste11 P Ste11 P P Ste7 0 P 100 P P Cdk on Fus3 Ste5 Ste11 Ste7 Ste7 Ste11 Fus3 80 ∆Fus3-BD 60 G1 G2 Ste7 Fus3 Ste7 40 P M 20 Fus3 Cdk off Fus3 Fus3 Fus3 0 OUTPUT α -Factor (µM) Downloaded from Box 1. Structure and mechanisms of a canonical scaffold: the MAPK 3FZE), and can be efficiently phosphorylated by the colocalized and scaffold protein Ste5. (A) The Ste5 scaffold protein is composed of activated MAPKKK Ste11. The minimal VWA also functions as a coac- modular interaction domains, some of which mediate essential steps in tivator that permits Ste7 activation of the MAPK Fus3, which is tethered the three-tiered mating MAPK signaling cascade, and some of which to Ste7 via docking motifs (PDB ID 2B9H) (18, 57) (see Fig. 4C). (C) function in higher-order regulatory behaviors. (B)Corestepsofmatingpath- The Ste5 scaffold also takes part in higher-order regulatory processes. way (see also movie S1): Binding of a-factor peptide to its receptor (Ste2) Phosphorylation of the PM helix by Cdk blocks Ste5 membrane binding leads to activation of the guanine nucleotide binding protein (G protein) (25), thus preventing activation of the mating response at specific stages and dissociation of Gbg (Ste4 and Ste18) from the Ga subunit (Gpa1). of the cell cycle. The Fus3-binding domain (Fus3-BD; PDB ID 2F49) The Ste5 RING domain binds to the free Gbg complex (54, 55), triggering appears to be important for regulatory feedback phosphorylation of rapid recruitment of the scaffold to the membrane. Stabilization and Ste5 by Fus3, rather
Recommended publications
  • The Wnt Pathway Scaffold Protein Axin Promotes Signaling Specificity by Suppressing Competing Kinase Reactions
    bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Wnt pathway scaffold protein Axin promotes signaling specificity by suppressing competing kinase reactions Maire Gavagan1,2, Erin Fagnan1,2, Elizabeth B. Speltz1, and Jesse G. Zalatan1,* 1Department of Chemistry, University of Washington, Seattle, WA 98195, USA 2These authors contributed equally to this work *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract GSK3β is a multifunctional kinase that phosphorylates β-catenin in the Wnt signaling network and also acts on other protein targets in response to distinct cellular signals. To test the long-standing hypothesis that the scaffold protein Axin specifically accelerates β-catenin phosphorylation, we measured GSK3β reaction rates with multiple substrates in a minimal, biochemically-reconstituted system. We observed an unexpectedly small, ~2-fold Axin-mediated rate increase for the β-catenin reaction. The much larger effects reported previously may have arisen because Axin can rescue GSK3β from an inactive state that occurs only under highly specific conditions.
    [Show full text]
  • CK1 Is Required for a Mitotic Checkpoint That Delays Cytokinesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 23, 1920–1926, October 7, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.07.077 Report CK1 Is Required for a Mitotic Checkpoint that Delays Cytokinesis Alyssa E. Johnson,1 Jun-Song Chen,1 isoforms were detected, which collapsed into a discrete ladder and Kathleen L. Gould1,* upon phosphatase treatment (Figure 1A, lanes 1 and 2). These 1Department of Cell and Developmental Biology, Vanderbilt bands are ubiquitinated isoforms because they collapse into a University School of Medicine, Nashville, TN 37232, USA single band in the absence of dma1+ (Figure 1A, lane 4) and Dma1 is required for Sid4 ubiquitination [6]. In dma1D cells, a single slower-migrating form of Sid4 was detected, which Summary was collapsed by phosphatase treatment, indicating that Sid4 is phosphorylated in vivo (Figure 1A, lanes 3 and 4). In vivo Failure to accurately partition genetic material during cell radiolabeling experiments validated Sid4 as a phosphoprotein division causes aneuploidy and drives tumorigenesis [1]. and revealed that Sid4 is phosphorylated on serines and thre- Cell-cycle checkpoints safeguard cells from such catastro- onines (see Figures S1A–S1C available online). The constitu- phes by impeding cell-cycle progression when mistakes tive presence of an unmodified Sid4 isoform indicates that arise. FHA-RING E3 ligases, including human RNF8 [2] and only a subpopulation of Sid4 is modified (Figure 1A). Collec- CHFR [3] and fission yeast Dma1 [4], relay checkpoint signals tively, these data indicate that Sid4 is ubiquitinated and phos- by binding phosphorylated proteins via their FHA domains phorylated in vivo.
    [Show full text]
  • Impact of Digestive Inflammatory Environment and Genipin
    International Journal of Molecular Sciences Article Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold Colin Shortridge 1, Ehsan Akbari Fakhrabadi 2 , Leah M. Wuescher 3 , Randall G. Worth 3, Matthew W. Liberatore 2 and Eda Yildirim-Ayan 1,4,* 1 Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; [email protected] 2 Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; [email protected] (E.A.F.); [email protected] (M.W.L.) 3 Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; [email protected] (L.M.W.); [email protected] (R.G.W.) 4 Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA * Correspondence: [email protected]; Tel.: +1-419-530-8257; Fax: +1-419-530-8030 Abstract: The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti- inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the Citation: Shortridge, C.; Akbari release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Fakhrabadi, E.; Wuescher, L.M.; Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the Worth, R.G.; Liberatore, M.W.; digestive inflammatory environment? (3) How does the scaffold degradation prevention technique Yildirim-Ayan, E.
    [Show full text]
  • Crosstalk Between Casein Kinase II and Ste20-Related Kinase Nak1
    University of Massachusetts Medical School eScholarship@UMMS GSBS Student Publications Graduate School of Biomedical Sciences 2013-03-05 Crosstalk between casein kinase II and Ste20-related kinase Nak1 Lubos Cipak University of Vienna Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_sp Part of the Biochemistry Commons, Cell Biology Commons, Cellular and Molecular Physiology Commons, and the Molecular Biology Commons Repository Citation Cipak L, Gupta S, Rajovic I, Jin Q, Anrather D, Ammerer G, McCollum D, Gregan J. (2013). Crosstalk between casein kinase II and Ste20-related kinase Nak1. GSBS Student Publications. https://doi.org/ 10.4161/cc.24095. Retrieved from https://escholarship.umassmed.edu/gsbs_sp/1850 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Student Publications by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. EXTRA VIEW Cell Cycle 12:6, 884–888; March 15, 2013; © 2013 Landes Bioscience Crosstalk between casein kinase II and Ste20-related kinase Nak1 Lubos Cipak,1,2,† Sneha Gupta,3,† Iva Rajovic,1 Quan-Wen Jin,3,4 Dorothea Anrather,1 Gustav Ammerer,1 Dannel McCollum3,* and Juraj Gregan1,5,* 1Max F. Perutz Laboratories; Department of Chromosome Biology; University of Vienna; Vienna, Austria; 2Cancer Research Institute; Slovak Academy of Sciences; Bratislava, Slovak Republic; 3Department of Microbiology and Physiological Systems and Program in Cell Dynamics; University of Massachusetts Medical School; Worcester, MA USA; 4Department of Biological Medicine; School of Life Sciences; Xiamen University; Xiamen, China; 5Department of Genetics; Comenius University; Bratislava, Slovak Republic †These authors contributed equally to this work.
    [Show full text]
  • Electrical Synaptic Transmission Requires a Postsynaptic Scaffolding Protein
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. TITLE: Electrical synaptic transmission requires a postsynaptic scaffolding protein Abagael M. Lasseigne1*, Fabio A. Echeverry2*, Sundas Ijaz2*, Jennifer Carlisle Michel1*, E. Anne Martin1, Audrey J. Marsh1, Elisa Trujillo1, Kurt C. Marsden3, Alberto E. Pereda2#, Adam C. Miller1#@ * denotes co-first author # denotes co-corresponding author @ denotes lead contact Affiliations: 1 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 2 Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA 3 Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA Correspondence: [email protected] [email protected] Keywords: gap junction; connexin; ZO1 ZO-1; synaptic development; electrical coupling 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.03.410696; this version posted December 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. SUMMARY Electrical synaptic transmission relies on neuronal gap junctions containing channels constructed by Connexins. While at chemical synapses neurotransmitter-gated ion channels are critically supported by scaffolding proteins, it is unknown if channels at electrical synapses require similar scaffold support.
    [Show full text]
  • Head Formation Requires Dishevelled Degradation That Is Mediated By
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev143107. doi:10.1242/dev.143107 RESEARCH ARTICLE Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1 Hyeyoon Lee*,**, Seong-Moon Cheong‡,**, Wonhee Han, Youngmu Koo, Saet-Byeol Jo, Gun-Sik Cho§, Jae-Seong Yang¶, Sanguk Kim and Jin-Kwan Han‡‡ ABSTRACT phosphorylate LRP6 (Bilic et al., 2007). Inhibition of GSK3β by Dishevelled (Dvl/Dsh) is a key scaffold protein that propagates Wnt the phospho-LRP6-containing activated receptor complex protects β signaling essential for embryogenesis and homeostasis. However, -catenin from proteasomal degradation (Logan and Nusse, 2004; β whether the antagonism of Wnt signaling that is necessary for MacDonald et al., 2009). Consequently, -catenin accumulates and vertebrate head formation can be achieved through regulation of Dsh interacts with T-cell factor/lymphoid-enhancer factor (TCF/LEF) in protein stability is unclear. Here, we show that membrane-associated the nucleus, thereby initiating transcription. RING-CH2 (March2), a RING-type E3 ubiquitin ligase, antagonizes During vertebrate development, the canonical Wnt pathway plays Wnt signaling by regulating the turnover of Dsh protein via ubiquitin- a crucial role in head formation (Glinka et al., 1997; Kiecker and mediated lysosomal degradation in the prospective head region of Niehrs, 2001; Yamaguchi, 2001). Proper head formation requires Xenopus. We further found that March2 acquires regional and inhibition of the canonical
    [Show full text]
  • INVESTIGATION of the ROLE of the SCAFFOLD PROTEIN SHC in ERK SIGNALING Kin Man Suen
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2015 INVESTIGATION OF THE ROLE OF THE SCAFFOLD PROTEIN SHC IN ERK SIGNALING kin man suen Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation suen, kin man, "INVESTIGATION OF THE ROLE OF THE SCAFFOLD PROTEIN SHC IN ERK SIGNALING" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 549. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/549 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. INVESTIGATION OF THE ROLE OF THE SCAFFOLD PROTEIN SHC IN ERK SIGNALING by Kin Man Suen, B.Sc. APPROVED: ______________________________ Dr. John E. Ladbury
    [Show full text]
  • The Regulatory Role of Key Metabolites in the Control of Cell Signaling
    biomolecules Review The Regulatory Role of Key Metabolites in the Control of Cell Signaling Riccardo Milanesi, Paola Coccetti * and Farida Tripodi Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; [email protected] (R.M.); [email protected] (F.T.) * Correspondence: [email protected]; Tel.: +39-02-6448-3521 Received: 8 May 2020; Accepted: 3 June 2020; Published: 5 June 2020 Abstract: Robust biological systems are able to adapt to internal and environmental perturbations. This is ensured by a thick crosstalk between metabolism and signal transduction pathways, through which cell cycle progression, cell metabolism and growth are coordinated. Although several reports describe the control of cell signaling on metabolism (mainly through transcriptional regulation and post-translational modifications), much fewer information is available on the role of metabolism in the regulation of signal transduction. Protein-metabolite interactions (PMIs) result in the modification of the protein activity due to a conformational change associated with the binding of a small molecule. An increasing amount of evidences highlight the role of metabolites of the central metabolism in the control of the activity of key signaling proteins in different eukaryotic systems. Here we review the known PMIs between primary metabolites and proteins, through which metabolism affects signal transduction pathways controlled by the conserved kinases Snf1/AMPK, Ras/PKA and TORC1. Interestingly, PMIs influence also the mitochondrial retrograde response (RTG) and calcium signaling, clearly demonstrating that the range of this phenomenon is not limited to signaling pathways related to metabolism. Keywords: Snf1/AMPK/SnRK1; Ras/PKA; TORC1; RTG; calcium; glucose; glycolysis; TCA; amino acids; protein-metabolite interaction 1.
    [Show full text]
  • Parkin Represses 6-Hydroxydopamine-Induced Apoptosis Via Stabilizing Scaffold Protein P62 in PC12 Cells
    npg Acta Pharmacologica Sinica (2015) 36: 1300-1307 © 2015 CPS and SIMM All rights reserved 1671-4083/15 www.nature.com/aps Original Article Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells Xiao-ou HOU1, Jian-min SI2, Hai-gang REN1, Dong CHEN1, Hong-feng WANG1, Zheng YING1, Qing-song HU1, Feng GAO1, *, Guang-hui WANG1, * 1Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215021, China; 2Laboratory of Molecular Neuropathology, Key Laboratory of Brain Function and Diseases and School of Life Sciences, University of Science & Technology of China, Chinese Academy of Sciences, Hefei 230027, China Aim: Parkin has been shown to exert protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in different models of Parkinson disease. In the present study we investigated the molecular mechanisms underlying the neuroprotective action of parkin in vitro. Methods: HEK293, HeLa and PC12 cells were transfected with parkin, parkin mutants, p62 or si-p62. Protein expression and ubiquitination were assessed using immunoblot analysis. Immunoprecipitation assay was performed to identify the interaction between parkin and scaffold protein p62. PC12 and SH-SY5Y cells were treated with 6-OHDA (200 μmol/L), and cell apoptosis was detected using PI and Hoechst staining. Results: In HEK293 cells co-transfected with parkin and p62, parkin was co-immunoprecipitated with p62, and parkin overexpression increased p62 protein levels. In parkin-deficient HeLa cells, transfection with wild-type pakin, but not with ligase activity-deficient pakin mutants, significantly increased p62 levels, suggesting that parkin stabilized p62 through its E3 ligase activity.
    [Show full text]
  • The Scaffold Protein IB1/JIP-1 Is a Critical Mediator of Cytokine-Induced Apoptosis in Pancreatic Β Cells
    Research Article 1463 The scaffold protein IB1/JIP-1 is a critical mediator of cytokine-induced apoptosis in pancreatic β cells Jacques-Antoine Haefliger1,*,‡, Thomas Tawadros1,*, Laure Meylan1, Sabine Le Gurun1, Marc-Estienne Roehrich1, David Martin1, Bernard Thorens2 and Gérard Waeber1 1Department of Internal Medicine, CHUV-1011 Lausanne, Switzerland 2Institute of Pharmacology and Toxicology, University Hospital, CHUV-1011 Lausanne, Switzerland *These authors contributed equally to this work ‡Author for correspondence (e-mail: jhaefl[email protected]) Accepted 7 January 2003 Journal of Cell Science 116, 1463-1469 © 2003 The Company of Biologists Ltd doi:10.1242/jcs.00356 Summary In insulin-secreting cells, cytokines activate the c-Jun N- cells by overproducing IB1/JIP-1 and this effect was terminal kinase (JNK), which contributes to a cell signaling associated with inhibition of caspase-3 cleavage. towards apoptosis. The JNK activation requires the Conversely, reducing IB1/JIP-1 content in INS-1 cells and presence of the murine scaffold protein JNK-interacting isolated pancreatic islets induced a robust increase in basal protein 1 (JIP-1) or human Islet-brain 1(IB1), which and cytokine-stimulated apoptosis. In heterozygous mice organizes MLK3, MKK7 and JNK for proper signaling carrying a selective disruption of the IB1/JIP-1 gene, the specificity. Here, we used adenovirus-mediated gene reduction in IB1/JIP-1 content in happloinsufficient transfer to modulate IB1/JIP-1 cellular content in order to isolated pancreatic islets was associated with an increased investigate the contribution of IB1/JIP-1 to β-cell survival. JNK activity and basal apoptosis. These data demonstrate Exposure of the insulin-producing cell line INS-1 or that modulation of the IB1-JIP-1 content in β cells is a isolated rat pancreatic islets to cytokines (interferon-γ, crucial regulator of JNK signaling pathway and of tumor necrosis factor-α and interleukin-1β) induced a cytokine-induced apoptosis.
    [Show full text]
  • The Protein Kinase CK2 Facilitates Repair of Chromosomal DNA Single-Strand Breaks
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 117, 17–28, April 2, 2004, Copyright 2004 by Cell Press The Protein Kinase CK2 Facilitates Repair of Chromosomal DNA Single-Strand Breaks Joanna I. Loizou,1 Sherif F. El-Khamisy,1 sion is itself deregulated in most tumors, and expression Anastasia Zlatanou,1 David J. Moore,5 of a CK2␣ promotes cancer in transgenic mouse models Douglas W. Chan,2 Jun Qin,2 (Kelliher et al., 1996; Litchfield, 2003; Seldin and Leder, Stefania Sarno,3,4 Flavio Meggio,3 1995). CK2 is also implicated in the response of mamma- Lorenzo A. Pinna,3,4 and Keith W. Caldecott1,* lian cells to a variety of stresses, including UV, heat 1Genome Damage and Stability Centre shock, inflammation, and damage to the mitotic spindle University of Sussex (Ahmed et al., 2002; Keller et al., 2001; Miyata et al., Science Park Road 1997). Some of the roles of CK2 in stress response ap- Falmer, Brighton BN1 9RQ pear to involve promoting the transcriptional activity of United Kingdom p53 by phosphorylation of Ser 392 (Hupp et al., 1992; 2 Baylor College of Medicine Keller et al., 2001; Keller and Lu, 2002; Meek et al., 1990). Houston, Texas 77030 In addition, CK2 can inhibit apoptosis by promoting the 3 Universita` di Padova antiapoptotic activity of the apoptosis repressor with Colombo 3 caspase recruitment domain (ARC) and by inhibiting 35121 Padova caspase-mediated cleavage of key apoptotic regulators 4 Venetian Institute for Molecular Medicine such as Bid (Desagher et al., 2001; Li et al., 2002b).
    [Show full text]
  • Integrin Signaling in Cell Adhesion and Mechanotransduction: Regulation of PI3K, AKT, And
    To my parents Und für Gerda, Margarete, Ida und Maria Everything has been said already, but not yet by everyone. Karl Valentin List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Zeller1, K.S., Idevall-Hagren1, O., Stefansson1, A., Velling, T., Jackson, S.P., Downward, J., Tengholm, A., Johansson, S. (2010) PI3-kinase p110α mediates β1 integrin-induced AKT activation and membrane protrusion during cell attachment and initial spreading. Cellular Signalling 22:1838–1848 1Equal contribution II Riaz, A., Zeller, K.S., Johansson, S. (2012) Receptor-specific mechanisms regulate phosphorylation of AKT at Ser473: Role of RICTOR in β1 integrin-mediated cell survival. PLoS ONE 7(2): e32081 III Zeller, K.S., Riaz, A., Sarve, H., Johansson, S. (2012) The role of mechanical force and ROS in integrin-dependent signals. Manuscript Reprints were made with permission from the respective publishers. The cover picture shows fibroblast-like BJ hTERT cells. Contents Introduction ...................................................................................................11 Background ...................................................................................................13 Integrin structure and activation...............................................................13 Integrin activating proteins.......................................................................15 Integrin signaling......................................................................................17
    [Show full text]