Paxillin Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Paxillin Interactions CELL SCIENCE AT A GLANCE 4139 Paxillin interactions including paxillin also serve as a point of paxillin by these kinases permits the convergence for signals resulting from regulated recruitment of downstream Christopher E. Turner stimulation of various classes of growth effector molecules such as CRK, which Dept of Cell and Developmental Biology, SUNY factor receptor. (via association with CAS) is important Upstate Medical University, 750 East Adams Street, for transduction of external signals into Syracuse, NY13210, USA Paxillin localizes to focal adhesions changes in cell motility and for E-Mail: [email protected] through its LIM domains, possibly modulation of gene expression by the through a direct association with β- various MAP kinase cascades. LIM- Paxillin is a multi-domain protein that integrin tails or an intermediate protein domain-associated kinases regulate localizes in cultured cells primarily to ‘X’. In lymphoid cells it can bind recruitment of paxillin to focal sites of cell adhesion to the extracellular directly to α4-integrin (not shown). Its adhesions. In addition, negative matrix (ECM) called focal adhesions. primary function is as a molecular regulators of these pathways, including Focal adhesions form a structural link adapter or scaffold protein that provides CSK (an inhibitor of SRC activity) and between the ECM and the actin multiple docking sites at the plasma PTP-PEST (a phosphatase that cytoskeleton and are also important sites membrane for an array of signaling and dephosphorylates p130Cas), bind of signal transduction; their components structural proteins. For example, it directly to paxillin, thereby bringing propagate signals arising from the provides a platform for protein tyrosine them into close proximity with their activation of integrins following their kinases such as FAK and SRC, which targets. engagement with ECM proteins, such as are activated as a result of adhesion or fibronectin, collagen and laminin. growth factor stimulation. Phosphoryl- Paxillin binds to many proteins that are Importantly, focal adhesion proteins ation of residues in the N-terminus of involved in effecting changes in the Growth Angiotensin II / ECM factors neuropeptides Integrin GPCR RTK G-protein-coupled GRK receptor endocytosis GIT/PKL SRC ARF CSK PIX ? Microtubules Papillomavirus NCK PT403 PS457/481 E6 protein PAK SH3 SH2 Activate paxillin- ? PBS associated kinases ? PPPVPPPP Clathrin LD1 LD2 LD3 LD4 LD5 Zn Zn Zn Zn Zn Zn Zn Zn N Paxillin LIM1 LIM2 LIM3 LIM4 C 31 118 188/190 ? 1 PY PY PS/PS 326 559 PBS PBS PBS ARF PBS PKL ABL Actopaxin GAP PTP-PEST FAK Vinculin CH CH SH2 SH2 SH2 PIX CDC42 CRK GRB2 SH3 Focal adhesion SRC RAC localization CAS ARF1 C3G PAK ARF6 CAS Focal adhesion SH3 disassembly? NCK RHO POR1 RAS SH2 Filopodia Stress Lamellipodia fibers MAPK p38/JNK Proliferation/ Actin Vinculin Actopaxin PTP-PEST Gene expression Talin Paxillin PY in ctin CRKSRC FAK -A X Nucleus α CAS RTK Adhesion Growth factors Integrins Motility Polarity ECM (See poster insert) 4140 CELL SCIENCE AT A GLANCE organization of the actin cytoskeleton, both as a substrate and as a docking site G-protein-coupled-receptor kinase; which are necessary for cell motility to perturb, and even bypass, the normal MAPK, mitogen-activated protein events associated with embryonic adhesion and growth factor signaling kinase (ERK, p38, JNK); PAK, p21- development, wound repair and tumor cascades necessary for controlled cell activated kinase; PBS, paxillin-binding metastasis. These range from structural proliferation. Others, such as the E6 subdomain; PIX, PAK-interacting proteins such as vinculin and actopaxin protein from Papillomavirus, facilitate exchange factor; PKL, paxillin kinase that bind actin directly to regulators of transformation by disrupting the normal linker; POR1, partner of Rac; PS, actin cytoskeletal dynamics such as the links between paxillin and the actin phosphoserine; PT, phosphothreonine; ARF GAP, PKL, the exchange factor cytoskeleton by displacing paxillin-LD- PY, phosphotyrosine; RTK, growth PIX and the p21-activated kinase, PAK. motif-binding proteins. factor receptor tyrosine kinase; SH, These proteins serve as modulators/ SRC-homology domain. effectors of the ARF and RHO GTPase Abbreviations: CAS, CRK-associated families. substrate; CH, calponin-homology Cell Science at a Glance on the Web domain; CSK, C-terminal SRC kinase; Electronic copies of the full-size poster Several of the paxillin-binding proteins E6, Papillomavirus E6 protein; FAK, insert are available in the online version of have oncogenic equivalents, such as v- focal adhesion kinase; GIT, GRK this article (see www.biologists.com/jcs). Src, v-Crk and BCR-ABL (not shown). interacter; GPCR, heterotrimeric- Files in several formats are provided and These proteins probably use paxillin G-protein-coupled receptor; GRK, may be downloaded for use as slides..
Recommended publications
  • The Wnt Pathway Scaffold Protein Axin Promotes Signaling Specificity by Suppressing Competing Kinase Reactions
    bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The Wnt pathway scaffold protein Axin promotes signaling specificity by suppressing competing kinase reactions Maire Gavagan1,2, Erin Fagnan1,2, Elizabeth B. Speltz1, and Jesse G. Zalatan1,* 1Department of Chemistry, University of Washington, Seattle, WA 98195, USA 2These authors contributed equally to this work *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/768242; this version posted September 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract GSK3β is a multifunctional kinase that phosphorylates β-catenin in the Wnt signaling network and also acts on other protein targets in response to distinct cellular signals. To test the long-standing hypothesis that the scaffold protein Axin specifically accelerates β-catenin phosphorylation, we measured GSK3β reaction rates with multiple substrates in a minimal, biochemically-reconstituted system. We observed an unexpectedly small, ~2-fold Axin-mediated rate increase for the β-catenin reaction. The much larger effects reported previously may have arisen because Axin can rescue GSK3β from an inactive state that occurs only under highly specific conditions.
    [Show full text]
  • CK1 Is Required for a Mitotic Checkpoint That Delays Cytokinesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 23, 1920–1926, October 7, 2013 ª2013 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2013.07.077 Report CK1 Is Required for a Mitotic Checkpoint that Delays Cytokinesis Alyssa E. Johnson,1 Jun-Song Chen,1 isoforms were detected, which collapsed into a discrete ladder and Kathleen L. Gould1,* upon phosphatase treatment (Figure 1A, lanes 1 and 2). These 1Department of Cell and Developmental Biology, Vanderbilt bands are ubiquitinated isoforms because they collapse into a University School of Medicine, Nashville, TN 37232, USA single band in the absence of dma1+ (Figure 1A, lane 4) and Dma1 is required for Sid4 ubiquitination [6]. In dma1D cells, a single slower-migrating form of Sid4 was detected, which Summary was collapsed by phosphatase treatment, indicating that Sid4 is phosphorylated in vivo (Figure 1A, lanes 3 and 4). In vivo Failure to accurately partition genetic material during cell radiolabeling experiments validated Sid4 as a phosphoprotein division causes aneuploidy and drives tumorigenesis [1]. and revealed that Sid4 is phosphorylated on serines and thre- Cell-cycle checkpoints safeguard cells from such catastro- onines (see Figures S1A–S1C available online). The constitu- phes by impeding cell-cycle progression when mistakes tive presence of an unmodified Sid4 isoform indicates that arise. FHA-RING E3 ligases, including human RNF8 [2] and only a subpopulation of Sid4 is modified (Figure 1A). Collec- CHFR [3] and fission yeast Dma1 [4], relay checkpoint signals tively, these data indicate that Sid4 is ubiquitinated and phos- by binding phosphorylated proteins via their FHA domains phorylated in vivo.
    [Show full text]
  • Paxillin Binding to the Cytoplasmic Domain of CD103 Promotes Cell Adhesion and Effector
    Author Manuscript Published OnlineFirst on October 11, 2017; DOI: 10.1158/0008-5472.CAN-17-1487 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Paxillin binding to the cytoplasmic domain of CD103 promotes cell adhesion and effector functions for CD8+ resident memory T cells in tumors Ludiane Gauthier1, Stéphanie Corgnac1, Marie Boutet1, Gwendoline Gros1, Pierre Validire2, Georges Bismuth3 and Fathia Mami-Chouaib1 1 INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France 2 Institut Mutualiste Montsouris, Service d’Anatomie pathologique, 75014 Paris, France. 3 INSERM U1016, CNRS UMR8104, Université Paris Descartes, Institut Cochin, 75014 Paris. S Corgnac, M Boutet and G Gros contributed equally to this work. M Boutet current address: Department of Microbiology and Immunology Albert Einstein College of Medecine, NY 10461 USA. Corresponding author: Fathia Mami-Chouaib, INSERM UMR 1186, Gustave Roussy. 39, rue Camille Desmoulins, F-94805 Villejuif. Phone: +33 1 42 11 49 65, Fax: +33 1 42 11 52 88, e-mail: [email protected] and [email protected] Running title: CD103 signaling in human TRM cells Key words: TRM cells, CD103 integrin, T-cell function and signaling, paxillin. Abbreviations: IS: immune synapse; LFA: leukocyte function-associated antigen; FI: fluorescence intensity; mAb: monoclonal antibody; phospho: phosphorylated; Pyk2: proline- rich tyrosine kinase-2; NSCLC: non-small-cell lung carcinoma; r: recombinant; sh-pxn: shorthairpin RNA-paxillin; TCR: T-cell receptor; TIL: tumor-infiltrating lymphocyte; TRM: tissue-resident memory T.
    [Show full text]
  • Paxillin: a Focal Adhesion-Associated Adaptor Protein
    Oncogene (2001) 20, 6459 ± 6472 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Paxillin: a focal adhesion-associated adaptor protein Michael D Schaller*,1 1Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center and Comprehensive Center for In¯ammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA Paxillin is a focal adhesion-associated, phosphotyrosine- The molecular cloning of paxillin revealed a number containing protein that may play a role in several of motifs that are now known to function in mediating signaling pathways. Paxillin contains a number of motifs protein ± protein interactions (see Figure 1) (Turner that mediate protein ± protein interactions, including LD and Miller, 1994; Salgia et al., 1995a). The N-terminal motifs, LIM domains, an SH3 domain-binding site and half of paxillin contains a proline-rich region that SH2 domain-binding sites. These motifs serve as docking could serve as an SH3 domain-binding site. Several sites for cytoskeletal proteins, tyrosine kinases, serine/ tyrosine residues conforming to SH2 domain binding threonine kinases, GTPase activating proteins and other sites were also noted. In addition, the N-terminal adaptor proteins that recruit additional enzymes into domain of paxillin contains ®ve copies of a peptide complex with paxillin. Thus paxillin itself serves as a sequence, called the LD motif, which are now known docking protein to recruit signaling molecules to a to function as binding sites for other proteins (see speci®c cellular compartment, the focal adhesions, and/ Table 1) (Brown et al., 1998a). The C-terminal half of or to recruit speci®c combinations of signaling molecules paxillin is comprised of four LIM domains, which are into a complex to coordinate downstream signaling.
    [Show full text]
  • Download PDF to Print
    MOLECULAR INSIGHTS IN PATIENT CARE A Cryptic BCR-PDGFRB Fusion Resulting in a Chronic Myeloid Neoplasm With Monocytosis and Eosinophilia: A Novel Finding With Treatment Implications Sanjeev Kumar Gupta, MD1,*; Nitin Jain, MD1,*; Guilin Tang, MD, PhD2; Andrew Futreal, PhD3; Sa A. Wang, MD2; Joseph D. Khoury, MD2; Richard K. Yang, MD, PhD2; Hong Fang, MD2; Keyur P.Patel, MD, PhD2; Rajyalakshmi Luthra, PhD2; Mark Routbort, MD, PhD2; Bedia A. Barkoh, MS2; Wei Chen, MS2; Xizeng Mao, PhD3; Jianhua Zhang, PhD3; L. Jeffrey Medeiros, MD2; Carlos E. Bueso-Ramos, MD, PhD2; and Sanam Loghavi, MD2 Background ABSTRACT Myeloid and lymphoid neoplasms with eosinophilia and gene rearrangement constitute a distinct group RNA-seq was used to identify the partner gene and confirm the of hematologic neoplasms in the current WHO clas- BCR-PDGFRB fi presence of a fusion. Identi cation of this fusion sification for hematopoietic neoplasms.1 Included in product resulted in successful treatment and long-term remission of this myeloid neoplasm. Based on our results, we suggest that despite this category are neoplasms harboring abnormal current WHO recommendations, screening for PDGFRB rearrange- gene fusions involving PDGFRA, PDGFRB,andFGFR1 ment in cases of leukocytosis with eosinophilia and no other etiologic or PCM1-JAK2. These fusions result in constitutive explanation is necessary, even if the karyotype is normal. activation of respective tyrosine kinases that can J Natl Compr Canc Netw 2020;18(10):1300–1304 be targeted using specific kinase inhibitors. There doi: 10.6004/jnccn.2020.7573 are multiple recognized partner genes for PDGFRA, PDGFRB, FGFR1, and JAK2. PDGFRB located at chro- mosome 5q32 has .25knownfusionpartners,with ETV6 the most common.2–8 Although PDGFRA re- arrangements often can be cryptic and not readily observed on routine karyotyping studies,9,10 PDGFRB rearrangements are believed to be nearly always vis- ible on routine karyotype.
    [Show full text]
  • A Network Model of Early Events in Epidermal Growth Factor Receptor Signaling That Accounts for Combinatorial Complexity Michael L
    BioSystems 83 (2006) 136–151 A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity Michael L. Blinov, James R. Faeder, Byron Goldstein, William S. Hlavacek ∗ Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Received 8 January 2005; received in revised form 6 May 2005; accepted 21 June 2005 Abstract We consider a model of early events in signaling by the epidermal growth factor (EGF) receptor (EGFR). The model includes EGF, EGFR, the adapter proteins Grb2 and Shc, and the guanine nucleotide exchange factor Sos, which is activated through EGF- induced formation of EGFR–Grb2–Sos and EGFR–Shc–Grb2–Sos assemblies at the plasma membrane. The protein interactions involved in signaling can potentially generate a diversity of protein complexes and phosphoforms; however, this diversity has been largely ignored in models of EGFR signaling. Here, we develop a model that accounts more fully for potential molecular diversity by specifying rules for protein interactions and then using these rules to generate a reaction network that includes all chemical species and reactions implied by the protein interactions. We obtain a model that predicts the dynamics of 356 molecular species, which are connected through 3749 unidirectional reactions. This network model is compared with a previously developed model that includes only 18 chemical species but incorporates the same scope of protein interactions. The predictions of this model are reproduced by the network model, which also yields new predictions. For example, the network model predicts distinct temporal patterns of autophosphorylation for different tyrosine residues of EGFR.
    [Show full text]
  • HER2 Stabilizes EGFR and Itself by Altering Autophosphorylation Patterns in a Manner That Overcomes Regulatory Mechanisms and Pr
    Oncogene (2013) 32, 4169–4180 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE HER2 stabilizes EGFR and itself by altering autophosphorylation patterns in a manner that overcomes regulatory mechanisms and promotes proliferative and transformation signaling Z Hartman1, H Zhao1 and YM Agazie1,2 One of the causes of breast cancer is overexpression of the human epidermal growth factor receptor 2 (HER2). Enhanced receptor autophosphorylation and resistance to activation-induced downregulation have been suggested as mechanisms for HER2-induced sustained signaling and cell transformation. However, the molecular mechanisms underlying these possibilities remain incompletely understood. In the current report, we present evidence that show that HER2 overexpression does not lead to receptor hyper-autophosphorylation, but alters patterns in a manner that favors receptor stability and sustained signaling. Specifically, HER2 overexpression blocks epidermal growth factor receptor (EGFR) tyrosine phosphorylation on Y1045 and Y1068, the known docking sites of c-Cbl and Grb2, respectively, whereas promoting phosphorylation on Y1173, the known docking site of the Gab adaptor proteins and phospholipase C gamma. Under these conditions, HER2 itself is phosphorylated on Y1221/1222, with no known role, and on Y1248 that corresponds to Y1173 of EGFR. Interestingly, suppressed EGFR autophosphorylation on the Grb2 and c-Cbl-binding sites correlated with receptor stability and sustained signaling, suggesting that HER2 accomplishes these tasks by altering autophosphorylation patterns. In conformity with these findings, mutation of the Grb2-binding site on EGFR (Y1068F–EGFR) conferred resistance to ligand-induced degradation, which in turn induced sustained signaling, and increased cell proliferation and transformation.
    [Show full text]
  • Real-Time Quantification of BCR-ABL Mrna Transcripts Using the Lightcycler-T(9;22) Quantification Kit
    real-time-quantification 09.05.2000 19:18 Uhr Seite 8 Real-time Quantification of BCR-ABL mRNA Transcripts Using the LightCycler-t(9;22) Quantification Kit Heiko Wittor 1, Hermann Leying 1, Andreas Hochhaus 2, and Rob van Miltenburg 1 1 Roche Molecular Biochemicals, Penzberg, Germany 2 III. Medizinische Universitätsklinik, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Mannheim, Germany ly different starting concentrations, so that the initial Introduction target concentration can be determined in a single PCR. The concentration of BCR-ABL transcripts is determi- Literature indicates that in 95 % of all subjects with ned relative to the number of transcripts of a control chronic myeloid leukemia (CML) and in 25-30 % of gene, glucose-6-phosphate dehydrogenase (G6PDH). subjects with acute lymphoblastic leukemia (ALL) a The entire procedure from sample preparation to reciprocal translocation between the long arms of quantitative result is performed in 4.5 hours. chromosome 9 and chromosome 22 [t(9;22)] can be found. This translocation or the resulting fusion pro- duct can be detected by a number of techniques, CLER including fluorescent in situ hybridization, Southern CY blotting, western blotting and reverse transcriptase TThe LightCycler System polymerase chain reaction (RT-PCR). Of these techni- The LightCycler System is based on the amplification LIGHT ques, RT-PCR for the chimeric fusion transcript BCR- of target sequences using alternating heated and ABL has received most attention in relation to the ambient temperature cycles. Samples are contained in detection of minimal residual disease because of its glass capillaries with high surface-to-volume ratio, high sensitivity (1).
    [Show full text]
  • Regulation of B Cell Receptor-Dependent NF-Κb Signaling by the Tumor Suppressor KLHL14
    Regulation of B cell receptor-dependent NF-κB signaling by the tumor suppressor KLHL14 Jaewoo Choia, James D. Phelana, George W. Wrightb, Björn Häuplc,d,e, Da Wei Huanga, Arthur L. Shaffer IIIa, Ryan M. Younga, Zhuo Wanga, Hong Zhaoa, Xin Yua, Thomas Oellerichc,d,e, and Louis M. Staudta,1 aLymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; bBiometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; cDepartment of Medicine II, Hematology/Oncology, Goethe University, 60590 Frankfurt, Germany; dGerman Cancer Consortium/German Cancer Research Center, 69120 Heidelberg, Germany; and eDepartment of Molecular Diagnostics and Translational Proteomics, Frankfurt Cancer Institute, 60596 Frankfurt, Germany Contributed by Louis M. Staudt, January 29, 2020 (sent for review December 4, 2019; reviewed by Shiv Pillai and Michael Reth) The KLHL14 gene acquires frequent inactivating mutations in ma- by ibrutinib, suggesting that it may be a critical target of this ture B cell malignancies, especially in the MYD88L265P, CD79B mu- drug (8). tant (MCD) genetic subtype of diffuse large B cell lymphoma Genetic analysis revealed recurrent mutations of the KLHL14 (DLBCL), which relies on B cell receptor (BCR) signaling for survival. gene in DLBCL, often in ABC tumors of the MCD genetic However, the pathogenic role of KLHL14 in DLBCL and its molec- subtype (2) and in PCNSL (6, 9). KLHL14 (also known as ular function are largely unknown. Here, we report that KLHL14 is in Printor) (10) belongs to the Kelch-like family of proteins that can close proximity to the BCR in the endoplasmic reticulum of MCD cell serve as subunits of Cullin-RING ubiquitin ligase (CRL) com- line models and promotes the turnover of immature glycoforms of plex (reviewed in ref.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Impact of Digestive Inflammatory Environment and Genipin
    International Journal of Molecular Sciences Article Impact of Digestive Inflammatory Environment and Genipin Crosslinking on Immunomodulatory Capacity of Injectable Musculoskeletal Tissue Scaffold Colin Shortridge 1, Ehsan Akbari Fakhrabadi 2 , Leah M. Wuescher 3 , Randall G. Worth 3, Matthew W. Liberatore 2 and Eda Yildirim-Ayan 1,4,* 1 Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; [email protected] 2 Department of Chemical Engineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; [email protected] (E.A.F.); [email protected] (M.W.L.) 3 Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA; [email protected] (L.M.W.); [email protected] (R.G.W.) 4 Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH 43614, USA * Correspondence: [email protected]; Tel.: +1-419-530-8257; Fax: +1-419-530-8030 Abstract: The paracrine and autocrine processes of the host response play an integral role in the success of scaffold-based tissue regeneration. Recently, the immunomodulatory scaffolds have received huge attention for modulating inflammation around the host tissue through releasing anti- inflammatory cytokine. However, controlling the inflammation and providing a sustained release of anti-inflammatory cytokine from the scaffold in the digestive inflammatory environment are predicated upon a comprehensive understanding of three fundamental questions. (1) How does the Citation: Shortridge, C.; Akbari release rate of cytokine from the scaffold change in the digestive inflammatory environment? (2) Fakhrabadi, E.; Wuescher, L.M.; Can we prevent the premature scaffold degradation and burst release of the loaded cytokine in the Worth, R.G.; Liberatore, M.W.; digestive inflammatory environment? (3) How does the scaffold degradation prevention technique Yildirim-Ayan, E.
    [Show full text]
  • The BCR Gene and Philadelphia Chromosome-Positive Leukemogenesis
    [CANCER RESEARCH 61, 2343–2355, March 15, 2001] Review The BCR Gene and Philadelphia Chromosome-positive Leukemogenesis Eunice Laurent, Moshe Talpaz, Hagop Kantarjian, and Razelle Kurzrock1 Departments of Bioimmunotherapy [E. L., M. T., R. K.] and Leukemia [H. K., R. K.], University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 Introduction Recent investigations have rapidly added crucial new insights into BCR-related Genes the complex functions of the normal BCR gene and of the BCR-ABL Several BCR-related pseudogenes (BCR2, BCR3, and BCR4) have chimera and are yielding potential therapeutic breakthroughs in the also been described (34). They are not translated into proteins. All of treatment of Philadelphia (Ph) chromosome-positive leukemias. The these genes have been mapped to chromosome 22q11 by in situ term “breakpoint cluster region (bcr)” was first applied to a 5.8-kb hybridization. The orientation is such that BCR2 is the most centro- span of DNA on the long arm of chromosome 22 (22q11), which is 2 meric, followed by BCR4, then BCR1 (the functional gene) and BCR3. disrupted in patients with CML bearing the Ph translocation [t(9; BCR2 and BCR4 are retained on chromosome 22 during the t(9;22) 22)(q34;q11); Refs. 1–3]. Subsequent studies demonstrated that the translocation. The BCR-related genes all contain 3Ј sequences iden- 5.8-kb fragment resided within a central region of a gene designated tical to those encompassing the last seven exons of the BCR1 gene BCR (4). It is now well established that the breakpoint within BCR can (34, 36).
    [Show full text]