Genome Wide Association Analysis in a Mouse Advanced Intercross Line
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
QPCT (4E11): Sc-517122
SANTA CRUZ BIOTECHNOLOGY, INC. QPCT (4E11): sc-517122 BACKGROUND APPLICATIONS QPCT (glutaminyl-peptide cyclotransferase) is a 361 amino acid protein that QPCT (4E11) is recommended for detection of QPCT of human origin by belongs to the glutaminyl-peptide cyclotransferase family. QPCT is responsible Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), for the presence of pyroglutamyl residues in many neuroendocrine peptides. immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of cell QPCT binds one zinc ion per subunit and has a bias against acidic and trypto- lysate)] and solid phase ELISA (starting dilution 1:30, dilution range 1:30- phan residues adjacent to the N-terminal glutaminyl residue. The human QPCT 1:3000). gene shares 86% overall sequence identity with its bovine homolog. QPCT Suitable for use as control antibody for QPCT siRNA (h): sc-94268, QPCT contains an N-terminal signal peptide region, several glycosylation and phos- shRNA Plasmid (h): sc-94268-SH and QPCT shRNA (h) Lentiviral Particles: phorylation sites and two cysteine residues conserved between the bovine sc-94268-V. and human enzymes. Existing as two alternatively spliced isoforms, the QPCT gene is conserved in chimpanzee, canine, bovine, mouse, rat, chicken, fruit fly, Molecular Weight of QPCT isoforms: 41/35 kDa. mosquito, M. grisea and N. crassa, and maps to human chromosome 2p22.2. RECOMMENDED SUPPORT REAGENTS REFERENCES To ensure optimal results, the following support reagents are recommended: 1. Busby, W.H., et al. 1987. An enzyme(s) that converts glutaminyl-peptides 1) Western Blotting: use m-IgGk BP-HRP: sc-516102 or m-IgGk BP-HRP (Cruz into pyroglutamyl-peptides. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Rates and Patterns of Indels in HIV-1 Gp120 Within and Among Hosts
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-19-2020 1:00 PM Rates and patterns of indels in HIV-1 gp120 within and among hosts John Lawrence Palmer, The University of Western Ontario Supervisor: Poon, Art F.Y., The University of Western Ontario A thesis submitted in partial fulfillment of the equirr ements for the Master of Science degree in Pathology and Laboratory Medicine © John Lawrence Palmer 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Molecular Genetics Commons Recommended Citation Palmer, John Lawrence, "Rates and patterns of indels in HIV-1 gp120 within and among hosts" (2020). Electronic Thesis and Dissertation Repository. 7308. https://ir.lib.uwo.ca/etd/7308 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Insertions and deletions (indels) in the HIV-1 gp120 variable loops modulate sensitivity to neutralizing antibodies and are therefore implicated in HIV-1 immune escape. However, the rates and characteristics of variable loop indels have not been investigated within hosts. Here, I report a within-host phylogenetic analysis of gp120 variable loop indels, with mentions to my preceding study on these indels among hosts. We processed longitudinally-sampled gp120 sequences collected from a public database (n = 11,265) and the Novitsky Lab (n=2,541). I generated time-scaled within-host phylogenies using BEAST, extracted indels by reconstructing ancestral sequences in Historian, and esti- mated variable loop indel rates by applying a Poisson-based model to indel counts and time data. -
Foxa1 and Foxa2 Together Control Developmental Gene Regulatory
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128108; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Foxa1 and Foxa2 together control developmental gene regulatory networks, and differentiation genes, in both human stem-cell derived liver progenitors and in a human liver cell line: evidence of a collapse of human liver differentiation Iyan Warren1, Mitchell Maloy1, Daniel Guiggey1, Ogechi Ogoke1, Theodore Groth1, Tala Mon1, Saber Meamardoost1, Xiaojun Liu1, Antoni Szeglowski4, Ryan Thompson1, Peter Chen3, Ramasamy Paulmurugan 4, Natesh Parashurama1,2,3 1 Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 2 Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), 875 Ellicott St., Buffalo, NY 14203 3 Department of Biomedical Engineering, University at Buffalo (State University of New York), Furnas Hall, Buffalo, NY 14260 4 Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA 94304-5483 * Corresponding Author: Natesh Parashurama, 907 Furnas Hall, Buffalo, NY 14260; Tel: 716- 645-1201; Fax: 716-645-3822; e-mail: [email protected] Running Title: Running Title: Blocking human gut and liver differentiation with Foxa1/2 Keywords: Human pluripotent stem cells, gut tube, Foxa1, Foxa2, RNAi, endoderm, liver, hepatic progenitors, gene regulatory network, hepatic nuclear network, endoderm, stem cells, differentiation, shRNA, hepatic differentiation bioRxiv preprint doi: https://doi.org/10.1101/2020.06.01.128108; this version posted September 18, 2020. -
Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct
Mol. Cells 2015; 38(10): 859-865 http://dx.doi.org/10.14348/molcells.2015.0098 Molecules and Cells http://molcells.org Established in 1990 Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct Jing Guo, Hongjuan He, Qi Liu, Fengwei Zhang, Jie Lv, Tiebo Zeng, Ning Gu, and Qiong Wu* Most imprinted genes are concerned with embryonic de- 79489583) and encodes glutaminyl cyclase, which is a Zn++- velopment, especially placental development. Here, we dependent acyltransferase with a mixed α-helix and β- sheet identified a placenta-specific imprinted gene Qpct. Our structure. It has been isolated from animals, plants, and bacte- results show that Qpct is widely expressed during early ria (Busby et al., 1987; Messer and Ottesen, 1964). The embryonic development and can be detected in the tele- cyclase converts N-terminal glutaminyl residues into pyrogluta- cephalon, midbrain, and rhombencephalon at E9.5-E11.5. mate, and plays a role in stabilizing these proteins (Fischer and Moreover, Qpct is strikingly expressed in the brain, lung Spiess, 1987; Hartlage-Rubsamen et al., 2009; Schilling et al., and liver in E15.5. Expression signals for Qpct achieved a 2008). QC is the alias of Qpct and its mRNA expressed level is peak at E15.5 during placental development and were only the highest in the brain. And the formation of QC is conductive detected in the labyrinth layer in E15.5 placenta. ChIP as- to obtain a greater understanding learning, and memory say results suggest that the modification of histone (Atwood et al., 2005; Iourov et al., 2014), which is vital for treat- H3K4me3 can result in maternal activating of Qpct. -
Whole-Exome Sequencing Associates Novel CSMD1 Gene Mutations with Familial Parkinson Disease
Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease Javier Ruiz-Martínez, ABSTRACT MD, PhD Objective: Despite the enormous advancements made in deciphering the genetic architecture of Luis J. Azcona, BBA Parkinson disease (PD), the majority of PD is idiopathic, with single gene mutations explaining only Alberto Bergareche, MD a small proportion of the cases. Jose F. Martí-Massó, MD, Methods: In this study, we clinically evaluated 2 unrelated Spanish families diagnosed with PD, in PhD which known PD genes were previously excluded, and performed whole-exome sequencing anal- Coro Paisán-Ruiz, PhD yses in affected individuals for disease gene identification. Results: Patients were diagnosed with typical PD without relevant distinctive symptoms. Two dif- Correspondence to ferent novel mutations were identified in the CSMD1 gene. The CSMD1 gene, which encodes Dr. Paisán-Ruiz: a complement control protein that is known to participate in the complement activation and [email protected] inflammation in the developing CNS, was previously shown to be associated with the risk of PD in a genome-wide association study. Conclusions: We conclude that the CSMD1 mutations identified in this study might be responsible for the PD phenotype observed in our examined patients. This, along with previous reported studies, may suggest the complement pathway as an important therapeutic target for PD and other neurodegenerative diseases. Neurol Genet 2017;3:e177; doi: 10.1212/NXG.0000000000000177 GLOSSARY AD 5 Alzheimer disease; CCP 5 complement control protein; fPD 5 familial Parkinson disease; H&Y 5 Hoehn and Yahr; INDEL 5 insertions/deletions; LOPD 5 late-onset PD; PD 5 Parkinson disease; RBD 5 REM sleep behavior disorder; RLS 5 restless legs syndrome; SNV 5 single nucleotide variant; WES 5 whole-exome sequencing. -
The University of Chicago Integrative Genetic
THE UNIVERSITY OF CHICAGO INTEGRATIVE GENETIC ANALYSIS OF BEHAVIORAL AND METABOLIC TRAITS IN AN ADVANCED INTERCROSS LINE OF MICE A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE BIOLOGICAL SCIENCES AND THE PRITZKER SCHOOL OF MEDICINE IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF HUMAN GENETICS BY NATALIA M. GONZALES CHICAGO, ILLINOIS DECEMBER 2017 Copyright c 2017 by Natalia M. Gonzales All Rights Reserved Freely available under a CC-BY 4.0 International license "Man had always assumed that he was more intelligent than dolphins because he had achieved so much - the wheel, New York, wars and so on... In fact there was only one species on the planet more intelligent than dolphins, and they spent a lot of their time in behavioural research laboratories running round inside wheels and conducting frighteningly elegant and subtle experiments on man. The fact that once again man completely misinterpreted this relationship was entirely according to these creatures' plans." Douglas Adams, The Hitchhiker's Guide to the Galaxy, 1979. Table of Contents LIST OF FIGURES . vi LIST OF TABLES . vii ACKNOWLEDGMENTS . viii ABSTRACT . xi 1 INTRODUCTION . 1 1.1 Genetic approaches for studying phenotypic variation . 1 1.2 Major insights from human GWAS and implications for psychiatric traits . 4 1.3 Model organisms can be used to circumvent some limitations of human GWAS 6 1.4 Genetic analysis in advanced intercross lines . 7 1.5 GWAS in structured populations . 9 1.6 Overview . 10 2 MOUSE GWAS OF INTERMEDIATE PHENOTYPES FOR HUMAN PSYCHI- ATRIC AND METABOLIC DISEASE . 12 2.1 Introduction . -
Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 'S Role in Working Memory
Neuropsychopharmacology (2017) 42, 2612–2622 © 2017 American College of Neuropsychopharmacology. All rights reserved 0893-133X/17 www.neuropsychopharmacology.org Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C 's Role in Working Memory 1 1 2 3 4,5 3 Donna Cosgrove , Omar Mothersill , Kimberley Kendall , Bettina Konte , Denise Harold , Ina Giegling , 3 6 6 7 Annette Hartmann , Alex Richards , Kiran Mantripragada , The Wellcome Trust Case Control Consortium , Michael J Owen6, Michael C O’Donovan6, Michael Gill4, Dan Rujescu3, James Walters2, Aiden Corvin4, Derek W Morris1 and Gary Donohoe*,1 1 The Cognitive Genetics & Cognitive Therapy Group, The School of Psychology and Discipline of Biochemistry, The Centre for Neuroimaging & Cognitive Genomics, National University of Ireland Galway, Galway, Ireland; 2Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK; 3Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany; 4 Neuropsychiatric Genetics Research Group, Department of Psychiatry, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland; 5 6 School of Biotechnology, Dublin City University, Dublin, Ireland; MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK With 4100 common variants associated with schizophrenia risk, establishing their biological significance is a priority. We sought to establish cognitive effects of -
8P23.2-Pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature
G C A T T A C G G C A T genes Article 8p23.2-pter Microdeletions: Seven New Cases Narrowing the Candidate Region and Review of the Literature Ilaria Catusi 1,* , Maria Garzo 1 , Anna Paola Capra 2 , Silvana Briuglia 2 , Chiara Baldo 3 , Maria Paola Canevini 4 , Rachele Cantone 5, Flaviana Elia 6, Francesca Forzano 7, Ornella Galesi 8, Enrico Grosso 5, Michela Malacarne 3, Angela Peron 4,9,10 , Corrado Romano 11 , Monica Saccani 4 , Lidia Larizza 1 and Maria Paola Recalcati 1 1 Istituto Auxologico Italiano, IRCCS, Laboratory of Medical Cytogenetics and Molecular Genetics, 20145 Milan, Italy; [email protected] (M.G.); [email protected] (L.L.); [email protected] (M.P.R.) 2 Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98100 Messina, Italy; [email protected] (A.P.C.); [email protected] (S.B.) 3 UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; [email protected] (C.B.); [email protected] (M.M.) 4 Child Neuropsychiatry Unit—Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, 20142 Milan, Italy; [email protected] (M.P.C.); [email protected] (A.P.); [email protected] (M.S.) 5 Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy; [email protected] (R.C.); [email protected] (E.G.) 6 Unit of Psychology, Oasi Research Institute-IRCCS, -
Multivariate Analysis Reveals Genetic Associations of the Resting Default Mode Network in Psychotic Bipolar Disorder and Schizophrenia
Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia Shashwath A. Medaa,1, Gualberto Ruañob,c, Andreas Windemuthb, Kasey O’Neila, Clifton Berwisea, Sabra M. Dunna, Leah E. Boccaccioa, Balaji Narayanana, Mohan Kocherlab, Emma Sprootena, Matcheri S. Keshavand, Carol A. Tammingae, John A. Sweeneye, Brett A. Clementzf, Vince D. Calhoung,h,i, and Godfrey D. Pearlsona,h,j aOlin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT 06102; bGenomas Inc., Hartford, CT 06102; cGenetics Research Center, Hartford Hospital, Hartford, CT 06102; dDepartment of Psychiatry, Beth Israel Deaconess Hospital, Harvard Medical School, Boston, MA 02215; eDepartment of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390; fDepartment of Psychology, University of Georgia, Athens, GA 30602; gThe Mind Research Network, Albuquerque, NM 87106; Departments of hPsychiatry and jNeurobiology, Yale University, New Haven, CT 06520; and iDepartment of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM 87106 Edited by Robert Desimone, Massachusetts Institute of Technology, Cambridge, MA, and approved April 4, 2014 (received for review July 15, 2013) The brain’s default mode network (DMN) is highly heritable and is Although risk for psychotic illnesses is driven in small part by compromised in a variety of psychiatric disorders. However, ge- highly penetrant, often private mutations such as copy number netic control over the DMN in schizophrenia (SZ) and psychotic variants, substantial risk also is likely conferred by multiple genes bipolar disorder (PBP) is largely unknown. Study subjects (n = of small effect sizes interacting together (7). According to the 1,305) underwent a resting-state functional MRI scan and were “common disease common variant” (CDCV) model, one would analyzed by a two-stage approach. -
Supplementary Data
Supplemental figures Supplemental figure 1: Tumor sample selection. A total of 98 thymic tumor specimens were stored in Memorial Sloan-Kettering Cancer Center tumor banks during the study period. 64 cases corresponded to previously untreated tumors, which were resected upfront after diagnosis. Adjuvant treatment was delivered in 7 patients (radiotherapy in 4 cases, cyclophosphamide- doxorubicin-vincristine (CAV) chemotherapy in 3 cases). 34 tumors were resected after induction treatment, consisting of chemotherapy in 16 patients (cyclophosphamide-doxorubicin- cisplatin (CAP) in 11 cases, cisplatin-etoposide (PE) in 3 cases, cisplatin-etoposide-ifosfamide (VIP) in 1 case, and cisplatin-docetaxel in 1 case), in radiotherapy (45 Gy) in 1 patient, and in sequential chemoradiation (CAP followed by a 45 Gy-radiotherapy) in 1 patient. Among these 34 patients, 6 received adjuvant radiotherapy. 1 Supplemental Figure 2: Amino acid alignments of KIT H697 in the human protein and related orthologs, using (A) the Homologene database (exons 14 and 15), and (B) the UCSC Genome Browser database (exon 14). Residue H697 is highlighted with red boxes. Both alignments indicate that residue H697 is highly conserved. 2 Supplemental Figure 3: Direct comparison of the genomic profiles of thymic squamous cell carcinomas (n=7) and lung primary squamous cell carcinomas (n=6). (A) Unsupervised clustering analysis. Gains are indicated in red, and losses in green, by genomic position along the 22 chromosomes. (B) Genomic profiles and recurrent copy number alterations in thymic carcinomas and lung squamous cell carcinomas. Gains are indicated in red, and losses in blue. 3 Supplemental Methods Mutational profiling The exonic regions of interest (NCBI Human Genome Build 36.1) were broken into amplicons of 500 bp or less, and specific primers were designed using Primer 3 (on the World Wide Web for general users and for biologist programmers (see Supplemental Table 2) [1]. -
NLN Mouse Monoclonal Antibody [Clone ID: OTI1D6] Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for CF504178 NLN Mouse Monoclonal Antibody [Clone ID: OTI1D6] Product data: Product Type: Primary Antibodies Clone Name: OTI1D6 Applications: FC, IF, IHC, WB Recommended Dilution: WB 1:500~2000, IHC 1:150, IF 1:100, FLOW 1:100 Reactivity: Human, Monkey, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Full length human recombinant protein of human NLN(NP_065777) produced in HEK293T cell. Formulation: Lyophilized powder (original buffer 1X PBS, pH 7.3, 8% trehalose) Reconstitution Method: For reconstitution, we recommend adding 100uL distilled water to a final antibody concentration of about 1 mg/mL. To use this carrier-free antibody for conjugation experiment, we strongly recommend performing another round of desalting process. (OriGene recommends Zeba Spin Desalting Columns, 7KMWCO from Thermo Scientific) Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 80.5 kDa Gene Name: Homo sapiens neurolysin (NLN), mRNA; nuclear gene for mitochondrial product. Database Link: NP_065777 Entrez Gene 75805 MouseEntrez Gene 117041 RatEntrez Gene 696884 MonkeyEntrez Gene 57486 Human Q9BYT8 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 NLN Mouse Monoclonal Antibody [Clone ID: OTI1D6] – CF504178 Background: This gene encodes a member of the metallopeptidase M3 protein family that cleaves neurotensin at the Pro10-Tyr11 bond, leading to the formation of neurotensin(1-10) and neurotensin(11-13).