Old and New Norwegian Records of Camillidae (Diptera), a Family Missing from the Checklist
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ephydra Hians) Say at Mono Lake, California (USA) in Relation to Physical Habitat
Hydrobiologia 197: 193-205, 1990. F. A. Comln and T. G. Northcote (eds), Saline Lakes. 193 © 1990 Kluwer Academic Publishers. Printed in Belgium. Distribution and abundance of the alkali fly (Ephydra hians) Say at Mono Lake, California (USA) in relation to physical habitat David B. Herbst Sierra Nevada Aquatic Research Laboratory, University of California, Star Route 1, Box 198, Mammoth Lakes, CA 93546, USA Key words: Ephydra, life cycle, development, distribution, Mono Lake, substrate Abstract The distribution and abundance of larval, pupal, and adult stages of the alkali fly Ephydra hians Say were examined in relation to location, benthic substrate type, and shoreline features at Mono Lake. Generation time was calculated as a degree-day model for development time at different temperatures, and compared to the thermal environment of the lake at different depths. Larvae and pupae have a contagious distribution and occur in greatest abundance in benthic habitats containing tufa (a porous limestone deposit), and in least abundance on sand or sand/mud substrates. Numbers increase with increasing area of tufa present in a sample, but not on other rocky substrates (alluvial gravel/cobble or cemented sand). Standing stock densities are greatest at locations around the lake containing a mixture of tufa deposits, detrital mud sediments, and submerged vegetation. Shoreline adult abundance is also greatest in areas adjacent to tufa. The shore fly (ephydrid) community varies in composition among different shoreline habitats and shows a zonation with distance from shore. The duration of pupation (from pupa formation to adult eclosion) becomes shorter as temperature increases. The temperature dependence of pupa development time is not linear and results in prolonged time requirements to complete development at temperatures below 20 ° C. -
Chapter 2 Diopsoidea
Chapter 2 Diopsoidea DiopsoideaTeaching material only, not intended for wider circulation. [email protected] 2:37 Diptera: Acalyptrates DIOPSOI D EA 50: Tanypezidae 53 ------ Base of tarsomere 1 of hind tarsus very slightly projecting ventrally; male with small stout black setae on hind trochanter and posterior base of hind femur. Postocellar bristles strong, at least half as long as upper orbital seta; one dorsocentral and three orbital setae present Tanypeza ----------------------------------------- 55 2 spp.; Maine to Alberta and Georgia; Steyskal 1965 ---------- Base of tarsomere 1 of hind tarsus strongly projecting ventrally, about twice as deep as remainder of tarsomere 1 (Fig. 3); male without special setae on hind trochanter and hind femur. Postocellar bristles weak, less than half as long as upper orbital bristle; one to three dor socentral and zero to two orbital bristles present non-British ------------------------------------------ 54 54 ------ Only one orbital bristle present, situated at top of head; one dorsocentral bristle present --------------------- Scipopeza Enderlein Neotropical ---------- Two or three each of orbital and dorsocentral bristles present ---------------------Neotanypeza Hendel Neotropical Tanypeza Fallén, 1820 One species 55 ------ A black species with a silvery patch on the vertex and each side of front of frons. Tho- rax with notopleural depression silvery and pleurae with silvery patches. Palpi black, prominent and flat. Ocellar bristles small; two pairs of fronto orbital bristles; only one (outer) pair of vertical bristles. Frons slightly narrower in the male than in the female, but not with eyes almost touching). Four scutellar, no sternopleural, two postalar and one supra-alar bristles; (the anterior supra-alar bristle not present). Wings with upcurved discal cell (11) as in members of the Micropezidae. -
Succession Pattern of Carrion-Feeding Insects in Paramo, Colombia
Forensic Science International 166 (2007) 182–189 www.elsevier.com/locate/forsciint Succession pattern of carrion-feeding insects in Paramo, Colombia Efrain Martinez, Patricia Duque, Marta Wolff * Grupo interdisciplinario de Estudios Moleculares (GIEM). Universidad de Antioquia. AA, 1226 Medellı´n, Colombia Received 8 April 2004; accepted 10 May 2006 Available online 21 June 2006 Abstract The minimum postmortem interval can be estimated based on knowledge of the pattern of insect succession on a corpse. To use this approach requires that we take into account the rates of insect development associated with particular climatological conditions of the region. This study is the first to look at insect succession on decomposing carcasses in the high altitude plains (Paramo) in Colombia, at 3035 m above sea level. Five stages of decomposition were designated with indicator species identified for each stage: Callı´phora nigribasis at the fresh stage; Compsomyiops verena at the bloated stage; Compsomyiops boliviana during active decay; Stearibia nigriceps and Hydrotaea sp. during advanced decay and Leptocera sp. for dry remains. A succession table is presented for carrion-associated species of the region, which can be used for estimating time since death in similar areas. Compsomyiops boliviana is reported for the first time in Colombia. # 2006 Elsevier Ireland Ltd. All rights reserved. Keywords: Forensic entomology; Paramo; Insect succession; Neotropics 1. Introduction change drastically over short distances. In any study of this type we would expect to find a similar process of insects being Forensic entomology is a frequently used tool to estimate the involved in the recycling of cadavers, but the occurrence of the time interval between death and the discovery of the body. -
2017-06 R&C Newsletter
Research & Collections Newsletter Summer 2017 re•search (ri-sûrch′, rē′sûrch) n. 1. Scholarly or scientific investigation or inquiry. See synonyms at inquiry. 2. Close, careful study. 3. When performed on collections, the raison d’être of all great natural history museums. Collection News Anthropology Through a collaborative effort between Anthropology, the Conservators, and the Smithsonian Institution, Anthropology’s Precolumbian gold catfish F.A.682.67-7 now has a date of 1570 ±30 BP according to Beta Analytic. Richard Cooke of the Smithsonian paid for the dating and the catfish will appear in a chapter he is writing, Resurrecting Playa Venado, a Pre- columbian Site in Central Panama, part of a larger work pub- lished by Dumbarton Oaks, Precolumbian Art of Lower Central America and Colombia. Researchers using our archaeology collections included Cat Santasillas a doctoral student from University of California Riverside, researching Tlatilco archaeological ceramics, Sue Bergh, Cleveland Art Museum, studying our Ancient Latin American textiles; Matthew Robb Chief Curator of the Fowler Museum UCLA, regarding our Teotihuacan snake fresco; Julia Burtenshaw, Postdoctoral Curatorial Fellow Art of the Ancient Americas LACMA, Michelle Rich, Mellon Postdoctoral Cura- torial Fellow Art of the Ancient Americas LACMA, and Ilona Katzew, Head of LACMA’s Latin American Art Department, all came to see our Precolumbian gold collection; Dana Doyle, California State University Long Beach School of Art, exam- ined Anthropology’s exhibit archives for information on Latin American Textiles. Gold Catfish With Clay Core from The Playa Venado Site, Panama. Page !1 Trevor Harrison, a graduate student from the Maritime Studies Program, East Carolina University, Greenville North Carolina, used our collections from Muwu CA-Ven-11 and Simom’o CA-Ven 26 to research Chumash canoe construction. -
(Diptera: Ephydridae), I: Revision of the Nearctic Species of Notiphila Fallen, Excluding the Caudata Group
Studies of Notiphilinae (Diptera: Ephydridae), I: Revision of the Nearctic Species of Notiphila Fallen, Excluding the caudata Group WAYNE N. MATHIS SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 287 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
First Record of Curtonotum Similetsacas, 1977 (Diptera: Curtonotidae) on Rabbit Carcass from Jeddah, Kingdom of Saudi Arabia
Life Science Journal 2016;13(12) http://www.lifesciencesite.com First record of Curtonotum simileTsacas, 1977 (Diptera: Curtonotidae) on rabbit carcass from Jeddah, Kingdom of Saudi Arabia Layla A.H. Al-Shareef Faculty of Science-Al Faisaliah, King Abdulaziz University, Ministry of Education, Kingdom of Saudi Arabia [email protected] Abstract: Adult of acalyptrate fly Curtonotum simile, were collected from rabbit carcass in desert area in Jeddah city, west region of the Kingdom of Saudi Arabia. The fly was obtained at autumn season. The details of morphological characters were detected and photographed. This knowledge is essential to build up database about dipteran diversity in Jeddah biogeoclimatic zone. [Layla A.H. Al-Shareef. First record of Curtonotum simile Tsacas, 1977 (Diptera: Curtonotidae) on rabbit carcass from Jeddah, Kingdom of Saudi Arabia Life Sci J 2016;13(12):34-40]. ISSN: 1097-8135 (Print) / ISSN: 2372-613X (Online).http://www.lifesciencesite.com. 6. doi:10.7537/marslsj131216.06. Keywords: Curtonotidae, Curtonotum simile, Diptera, Jeddah. 1. Introduction stage. This study is essential to build up database Curtonotidae is a family of acalyptrate flies in about dipteran diversity in the kingdom of Saudi the Ephydroidea, a superfamily that also includes Arabia particularly in Jeddah biogeoclimatic zone. the Drosophilidae. Curtonotids superficially resembling drosophilids and previously treated as a 2. Materials and Methods subfamily of Drosophilidae by Hendel (1917, 1928, Fly specimens for this study were collected 1932), Sturtevant (1921), Malloch (1930) and from domestic rabbit carcass placedin desert area in Curran (1933, 1934a,b). Although, Enderlein Jeddah city at December 2015. Jeddah city is (1914, 1917) treated this group as a subfamily of located on the west coast of the Kingdom of Saudi Ephydridae, but Duda (1924) and Okada (1960, Arabia, at the middle of the eastern shore of the 1966) treated Curtonotum Macquart and related Red Sea. -
Biogeography and Physiological Adaptations of the Brine Fly Genus Ephydra (Diptera: Ephydridae) in Saline Waters of the Great Basin
Great Basin Naturalist Volume 59 Number 2 Article 3 4-30-1999 Biogeography and physiological adaptations of the brine fly genus Ephydra (Diptera: Ephydridae) in saline waters of the Great Basin David B. Herbst University of California, Mammoth Lakes and University of California, Santa Barbara Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Herbst, David B. (1999) "Biogeography and physiological adaptations of the brine fly genus Ephydra (Diptera: Ephydridae) in saline waters of the Great Basin," Great Basin Naturalist: Vol. 59 : No. 2 , Article 3. Available at: https://scholarsarchive.byu.edu/gbn/vol59/iss2/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 59(2), ©1999, pp. 127-135 BIOGEOGRAPHY AND PHYSIOLOGICAL ADAPTATIONS OF THE BRINE FLY GENUS EPHYDRA (DIPTERA: EPHYDRIDAE) IN SALINE WATERS OF THE GREAT BASIN David B. Herbst1 ABSTRACf.-Four species of the genus Ephydra are commonly found in saline waters within the hydrologic Great Basin: E. hians, E. gracilis, E. packardi, and E. auripes. Though none of these brine flies is endemic (distributions also occur outside the Great Basin), they all inhabit distinctive habitat types and form the characteristic benthic insect fauna ofinland saline-water habitats. The affinities ofeach species for different salinity levels and chemical compositions, and ephemeral to perennial habitats, appear to form the basis for biogeographic distribution patterns. -
Ecological Physiology of the Larvel Brine Fly Ephydra
AN ABSTRACT OF THE THESIS OF David Bruce Herbst for the degree of Master of Science in Zoology presented on May 22, 1980 Title: Ecological Physiology of the Larval Brine Fly Ephydra (Hydropyrus) hians, an Alkaline-Salt Lake Inhabiting Ephydrid (Diptera). Redacted for Privacy Abstract approved: (I, Anrr. Frank P. Conte Dipterans of the family Ephydridae (shore and brine flies) are well known for their ability to tolerate and thrive in a wide variety of physically harsh circumstances. The immature stages of one such species of this family, Ephydra hians, are characteristically limited in distribution as benthic inhabitants of highly alkaline salt lakes in the arid regions of western North America. In order to examine the nature of this habitat specificity, the intraspecific comparative physiologyof osmotic and ionic regulation, energy metabolism and survival was examined in two populations of brine fly larvae which differ inthe historical-environmental stability of their native habitats. The population at Mono Lake, California, has, until recent times, been evolving under relatively stable conditions of water chemistryand habitat availablility (i.e., little fluctuation in salinity or littoral benthic habitat due to stable lake level). Since 1940 however, the lake level has been steadily dropping and the dissolved salt content increasing due to diversion of tributary water. The population at Abert Lake, Oregon, has by contrast been subject to severeshort-term changes in salinity and habitat availability throughout its history.Larvae were exposed to both alkaline andnon-alkaline brines. While both populations displayed hyposmotic regulation in alkalinesalt media, Mono Lake larvae consistently showed more effective maintenanceof homeostasis. -
Trapping of Air-Borne Insects on Ships on the Pacific, Part 51
Pacific Insects 6 (2) : 274-282 August 31, 1964 TRAPPING OF AIR-BORNE INSECTS ON SHIPS ON THE PACIFIC, PART 51 By J. C. Harrell and C. M. Yoshimoto BISHOP MUSEUM, HONOLULU, HAWAII Abstract: Trapping was done during 1963 aboard military transport vessels between North America and Asia on 3 separate cruises. Several thousand specimens were collected, of which 20 were taken more than 500 km down wind from a continent or island. The majo rity of specimens trapped were Homoptera, Diptera, Hemiptera and Hymenoptera. This fifth report of the series of trapping articles presents preliminary data on results of three trips aboard military transport vessels. In 1963, Harrell made two round trips aboard MSTS vessels. The first trip aboard the U. S. S. Mann in April and May, was from Ho nolulu, to Guam, South Korea, Philippines, Guam, and return to Honolulu. The second trip, aboard the U. S. N. S. Gaffey from 23 September to 2 October, was from Honolulu to Japan, Okinawa, South Korea, Japan, Adak (Alaska), and terminated in San Francisco. In June 1963, Yoshimoto collected for one trip aboard the U. S. S. Mann between Honolulu and Japan. A more comprehensive report will be presented later, after precise identifica tion of the specimens have been made by specialists. Methods: Nylon nets of 75 cm ring diameter were used on all three trips. As nets with detachable cones proved to be a liability in previous cruises, only nets without detachable cones were used. The rings, however, were modified with a locking hinge allowing easy re placement of damaged nets. -
Dipterists Digest: Contents 1988–2021
Dipterists Digest: contents 1988–2021 Latest update at 12 August 2021. Includes contents for all volumes from Series 1 Volume 1 (1988) to Series 2 Volume 28(2) (2021). For more information go to the Dipterists Forum website where many volumes are available to download. Author/s Year Title Series Volume Family keyword/s EDITOR 2021 Corrections and changes to the Diptera Checklist (46) 2 28 (2): 252 LIAM CROWLEY 2021 Pandivirilia melaleuca (Loew) (Diptera, Therevidae) recorded from 2 28 (2): 250–251 Therevidae Wytham Woods, Oxfordshire ALASTAIR J. HOTCHKISS 2021 Phytomyza sedicola (Hering) (Diptera, Agromyzidae) new to Wales and 2 28 (2): 249–250 Agromyzidae a second British record Owen Lonsdale and Charles S. 2021 What makes a ‘good’ genus? Reconsideration of Chromatomyia Hardy 2 28 (2): 221–249 Agromyzidae Eiseman (Diptera, Agromyzidae) ROBERT J. WOLTON and BENJAMIN 2021 The impact of cattle on the Diptera and other insect fauna of a 2 28 (2): 201–220 FIELD temperate wet woodland BARRY P. WARRINGTON and ADAM 2021 The larval habits of Ophiomyia senecionina Hering (Diptera, 2 28 (2): 195–200 Agromyzidae PARKER Agromyzidae) on common ragwort (Jacobaea vulgaris) stems GRAHAM E. ROTHERAY 2021 The enigmatic head of the cyclorrhaphan larva (Diptera, Cyclorrhapha) 2 28 (2): 178–194 MALCOLM BLYTHE and RICHARD P. 2021 The biting midge Forcipomyia tenuis (Winnertz) (Diptera, 2 28 (2): 175–177 Ceratopogonidae LANE Ceratopogonidae) new to Britain IVAN PERRY 2021 Aphaniosoma melitense Ebejer (Diptera, Chyromyidae) in Essex and 2 28 (2): 173–174 Chyromyidae some recent records of A. socium Collin DAVE BRICE and RYAN MITCHELL 2021 Recent records of Minilimosina secundaria (Duda) (Diptera, 2 28 (2): 171–173 Sphaeroceridae Sphaeroceridae) from Berkshire IAIN MACGOWAN and IAN M. -
Manual of Nearctic Diptera
539 The history of dipterology at the Canadian National Collection of Insects, with special reference to the Manual of Nearctic Diptera Jeffrey M. Cumming, Bradley J. Sinclair, Scott E. Brooks, James E. O’Hara, Jeffrey H. Skevington Abstract*The history of Diptera research at the Canadian National Collection of Insects is briefly outlined. Short biographic sketches of the coordinators of the Manual of Nearctic Diptera are given and the development of the Manual project is presented to provide background on their achievements. Lists of publications by each of the coordinators and of patronyms honouring them are provided. This Festschrift honours the remarkable contributions of the coordinators, J. Frank McAlpine, Bobbie V. Peterson, Guy E. Shewell, Herbert J. Teskey, J. Richard Vockeroth, and D. Monty Wood. Re´sume´*On de´crit brie`vement l’histoire de la recherche en dipte`re a` la Collection nationale canadienne d’insectes. On pre´sente de courtes biographies des coordonnateurs du Manuel de dipte`res ne´arctiques, ainsi que le de´veloppement du projet du manuel pour fournir de l’information sur leurs re´alisations. On fourni des listes de re´fe´rences publie´es par chaque coordinateur et des noms patronymiques en leur honneur. Ce nume´ro est en l’honneur des contributions remarquables des coordinateurs J. Frank McAlpine, Bobbie V. Peterson, Guy E. Shewell, Herbert J. Teskey, J. Richard Vockeroth, et D. Monty Wood. Introduction been taken from personal accounts, archived sources housed in the Diptera Unit, and This historical review treats the development publications on the history of systematic of the Diptera collection at the Canadian research in Canada and publications from the National Collection of Insects, Arachnids Research Branch of AAFC, including Gibson and Nematodes (CNC) and the individuals and McSwaine (1920), McDunnough (1926), responsible for its growth and curation. -
Appendix I. Natural History of the Mono Lake Alkali Fly
Appendix I. Natural History of the Mono Lake Alkali Fly This appendix presents a discussion of the life history of the Mono Lake alkali fly and the physical and biological constraints that determine the fly's abundance and distribution in Mono Lake. CLASSIFICATION AND TAXONOMY The Mono Lake alkali fly (Ephydra hians Say) was first described and classified by Say in 1830 as belonging to the shore and brine fly family Ephydridae, in the true fly order Diptera. Brine flies (Ephydrids) are often the most abundant benthic and shore inhabitants of saline aquatic habitats throughout the world (Herbst 1986). The genus Ephydra inhabits extreme environments such as acidic thermal springs, alkaline saline lakes, tidal splash pools, and coastal marshes, but individual species often are adapted to particular habitat types (Herbst 1990a). For example, Ephydra thermophilia is present only in acidic hot springs in Yellowstone National Park, while Ephydra cinerea is found in the Great Salt Lake in Utah (Herbst 1986). The Mono Lake alkali fly, as its common name implies, is specifically adapted to alkaline habitats. The species inhabits many other alkaline saline lakes and ponds in North America (Herbst 1990b). LIFE HISTORY The Mono Lake alkali fly has a typical insect life cycle, developing from egg to larva before pupating and metamorphosing into an adult reproducing insect (refer to Figure 3E-3 in Chapter 3E, "Aquatic Productivity"). The life cycle begins as a mated female fly crawls underwater to lay her eggs individually on benthic algal mats or substrate close to shore. The eggs remain on the bottom mainly because they are heavier than Mono Lake water, although the female fly may further assist by tucking her eggs into the algal mat.