Is Dark Matter Made up of Xons?

Total Page:16

File Type:pdf, Size:1020Kb

Is Dark Matter Made up of Xons? Journal of Modern Physics, 2013, 4, 121-125 http://dx.doi.org/10.4236/jmp.2013.48A011 Published Online August 2013 (http://www.scirp.org/journal/jmp) Is Dark Matter Made up of Xons? Jean-Paul Auffray ex Courant Institute of Mathematical Sciences, New York University, New York, USA Email: [email protected] Received June 5, 2013; revised July 8, 2013; accepted August 1, 2013 Copyright © 2013 Jean-Paul Auffray. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Three months before his untimely death in Paris in July 1912, Henri Poincaré formulated the conjecture that Planck’s action element could (should) be regarded as constituting a “véritable atome”, i.e. an “atom of motion”, whose integrity arises from the fact that the “points” it contains are equivalent to one another from the standpoint of probability. In this paper we investigate the possibility that this conjecture provides a clue to the origin and nature of dark matter. Keywords: Smolin; Poincaré; Action; Space; Vacuum; Scale Relativity; Nottale; Dark Matter; Xons 1. Introduction 2. Premises Some years back, in “The Trouble with Physics”, Lee 2.1. Poincaré’s (Little Known) Action Conjecture Smolin wrote: “Many quantum-gravity theorists believe Leibniz’s invention of his Dynamica in 1689, at the heart there is a deeper level of reality, where space does not of which he placed the abstract concept of action (actio), exist (this is taking background independence to its logi- provided an alternate framework to Newton’s System of cal extreme)”. In Lee Smolin’s conception “background the World in which Absolute Space and Absolute Time independence” refers to the proposal that “the laws of enter as primary or “God-given” Principles. The subse- nature can be specified completely without making any quent discovery of the Principle of Least Action, fol- prior assumption about the geometry of space” and to the lowed by the invention of the elementary quantum of requirement that “space and time emerge from the laws action by Max Planck in 1900, placed action at the very rather than providing an arena in which things happen”. heart of modern physics. To achieve this objective, he offered this advice (his ital- As a physical entity worthy of consideration per se, ics): “Don’t start with space, or anything moving in the elementary quantum of action was investigated by space.” He proposed, instead: “Start with something that Henri Poincaré shortly before his untimely death in July is purely quantum-mechanical and has, instead of space, 1912 when he proposed that it constitutes a “véritable some kind of purely quantum structure [1].” atome”—an “atom of motion”—whose integrity arises It is noteworthy that, in this statement, Lee Smolin re- from the fact that the “points” it contains are equivalent fers to space—and not to time (nor to spacetime)—as the to one another from the standpoint of probability, a ingredient one should dispose of, suggesting to replace it highly significant remark [3].. by something having a “purely quantum structure”. There is a reason for this distinction: quantum gravity specialists 2.2. Origin of the Poincaré Action Conjecture have argued successfully that “the best strategy for un- derstanding quantum gravity is to build a picture of the Poincaré’s action conjecture has its roots in a remark physical world where the notion of time plays no role at originally made by Max Planck concerning his discovery all”. In his recently published review article “Forget of a connection between the quantum of action and the time”, Carlo Rovelli has shown convincingly how this Liouville Theorem of classical physics reformulated in can be done [2]. the framework of Gibbs’ statistical mechanical method of We attempt in this Note to provide a plausible answer representations in phase space. Poincaré apparently first to the request Lee Smolin has formulated concerning heard of the connection when he met Planck at the Con- space. Our scheme is founded in a (little known) action seil de Physique (“First Solvay Congress”) gathered in conjecture originally formulated by Henri Poincaré that Brussels in October-November 1911. Transcripts of the we shall now describe. Conseil meetings show that Poincaré was inquisitive of Copyright © 2013 SciRes. JMP 122 J.-P. AUFFRAY the true nature of Planck’s action element all through that number of possible distinct states; it jumps from one of week [4]. these states to another without passing through interme- The issue divided the Conseil into three “camps”: diate states [5].” those, a majority, who did not care one way or the other; Thus was born in 1912, under Poincaré’s pen, the con- those, a minority led by Arnold Sommerfeld, who con- cept of quantum jumps. sidered Planck’s action element to be the true fundamen- tal entity one needed to take into account in the formula- 2.5. Transition tion of emerging quantum theories; and those, led by In what follows we examine the possibility that Planck’s Albert Einstein, who favored the “energy quantum” over action element, understood in the sense proposed by the action element. Poincaré, should indeed be regarded to be not simply a Obviously impressed by Planck’s connection of the “universal constant”—Planck’s constant” akin to other action element with the Liouville Theorem and by Som- “universal constants” such as π, e, c or k—but as the merfeld’s vigorous defense of the deep physical signifi- fundamental principle of quantum physics (we use here cance he attached to this connection, Poincaré formed his the word principle in the Aristotelian sense it originally conjecture shortly after the Conseil ended. To clarify the had: “that which comes first” [archē]). issue involved, we shall briefly outline how the connec- To implement this scheme, we shall engage in a line of tion with the Liouville Theorem arises. thought initiated by James Gray, Yang-Hui He, Vishnu Jejjala and Brent D. Nelson in their paper “Vacuum 2.3. Connection with the Liouville Theorem Geometry and the Search for New Physics” in which Consider two allowed states of a given (classical) physi- they explore the possibility of finding a “hidden struc- cal system. If one of the states is a necessary conse- ture” in vacuum space [6]. quence of the other, then the two states are equally prob- able. Let q represent a generalized coordinate of the sys- 3. The Concept of Space Revisited tem and p the corresponding conjugate momentum, then Ordinary space is thought (is said) to be composed of dpdq constitutes an infinitesimally small elementary do- dimensionless “points”—0-branes in M-theory—whose main of probability associated with the system. Planck’s (sole) characteristics is to “exist”. In Euclidian space, and quantum hypothesis consists in assuming that, rather than in relativistic spacetimes as well, these points are related being infinitesimally small, the elementary domains are to one another via notions of proximity and distance (in- all equal and given by the relation ddpq h, where h terval). is Planck’s famous “second universal constant” (the first We postulate instead the presence in nature of a vac- is k, which has the dimension of entropy and intervenes uum space containing: to make kT, where T is the system temperature, an en- 1) An unstructured chaotic or “passive” substrate com- ergy). posed of dimensionless elements we shall call “i-points” pending further examination of their characteristics. i- 2.4. Poincaré Invents the Concept of Quantum points present in the substrate bear no geometrical rela- Jumps tionships with one another. Poincaré’s reasoning concerning the structure of Planck’s 2) A primitive or active principle that we shall call the finite domains is striking: “These domains are indivisible, xon and designate as h, since, as we shall show, it corre- he wrote. If we know the system to be in one of them, sponds to Planck’s 1900 invention of the action element. then everything is automatically determined. If it were In what follows, we shall call the interaction of xons not, if events that are to follow were not fully determined with i-points the “occurrence” of h in the chaotic sub- by that knowledge—in a word, if they were to differ de- strate and we shall say that the result of the occurrence is pending on the system being in such or such part of the the potential formation in the substrate of i-point clusters, domain—then, since the probability of some future designation which conveys no predetermined algebraic or geometric connotations. events would not be the same in its diverse parts, the domain considered would not be indivisible from the 4. The Crux of the Matter viewpoint of probability.” And he concluded: “This means that all the system states that correspond to a giv- If Nature’s underlying reality is indeed to be described in en domain are undistinguishable from one another and terms of a passive substrate which acquires geometric therefore constitute one and the same state.” A conclu- and/or dynamic properties through the occurrence of an sion that led him to assert unambiguously: “We are action element acting in its midst as a “first principle” or therefore led to formulate the following fundamental cause, then significant consequences must ensue. One in theorem: A physical system can exist only in a finite particular is that the symbol h, which represents the ac- Copyright © 2013 SciRes. JMP J.-P. AUFFRAY 123 tion element, should no longer be considered to designate structures. We shall assume instead that they relate at simply a “universal constant of nature” akin to other best to fractal structures.
Recommended publications
  • Laurent Nottale CNRS LUTH, Paris-Meudon Observatory Scales in Nature
    Laurent Nottale CNRS LUTH, Paris-Meudon Observatory http://www.luth.obspm.fr/~luthier/nottale/ Scales in nature 1 10 -33 cm Planck scale 10 -28 cm Grand Unification 10 10 accelerators: today's limit 10 -16 cm electroweak unification 20 10 3 10 -13 cm quarks 4 10 -11 cm electron Compton length 1 Angstrom Bohr radius atoms 30 virus 10 40 microns bacteries 1 m human scale 40 10 6000 km Earth radius 700000 km Sun radius 1 millard km Solar System 50 10 1 parsec distances to Stars 10 kpc Milky Way radius 1 Mpc Clusters of galaxies 60 100 Mpc very large structures 10 28 10 cm Cosmological scale Scales of living systems Relations between length-scales and mass- scales l/lP = m/mP (GR) l/lP = mP / m (QM) FIRST PRINCIPLES RELATIVITY COVARIANCE EQUIVALENCE weak / strong Action Geodesical CONSERVATION Noether SCALE RELATIVITY Continuity + Giving up the hypothesis Generalize relativity of differentiability of of motion ? space-time Transformations of non- differentiable coordinates ? …. Theorem Explicit dependence of coordinates in terms of scale variables + divergence FRACTAL SPACE-TIME Complete laws of physics by fundamental scale laws Constrain the new scale laws… Principle of scale relativity Generalized principle Scale covariance of equivalence Linear scale-laws: “Galilean” Linear scale-laws : “Lorentzian” Non-linear scale-laws: self-similarity, varying fractal dimension, general scale-relativity, constant fractal dimension, scale covariance, scale dynamics, scale invariance invariant limiting scales gauge fields Continuity + Non-differentiability
    [Show full text]
  • New Formulation of Stochastic Mechanics. Application to Chaos
    1 NEW FORMULATION OF STOCHASTIC MECHANICS. APPLICATION TO CHAOS by Laurent NOTTALE CNRS, Observatoire de Paris-Meudon (DAEC) 5, place Janssen, F-92195 Meudon Cedex, France 1. Introduction 2. Basic Formalism 3. Generalization to Variable Diffusion Coefficient 3.1. Fractal dimension different from 2 3.2. Position-dependent diffusion coefficient 4. Application to Celestial Mechanics 4.1. Distribution of eccentricities of planets 4.2. Distribution of planet distances 4.3. Distribution of mass in the solar system 4.4. Distribution of angular momentum 5. Discussion and Conclusion References Nottale, L., 1995, in "Chaos and diffusion in Hamiltonian systems", Proceedings of the fourth workshop in Astronomy and Astrophysics of Chamonix (France), 7-12 February 1994, Eds. D. Benest et C. Froeschlé (Editions Frontières), pp 173-198. 2 Nouvelle formulation de la mécanique stochastique Application au chaos résumé Nous développons une nouvelle méthode pour aborder le problème de l’émergence de structures telle qu'on peut l'observer dans des systèmes fortement chaotiques. Cette méthode s’applique précisément quand les autres méthodes échouent (au delà de l’horizon de prédictibilité), c’est à dire sur les très grandes échelles de temps. Elle consiste à remplacer la description habituelle (en terme de trajectoires classiques déterminées) par une description stochastique, approchée, en terme de familles de chemins non différentiables. Nous obtenons ainsi des équations du type de celles de la mécanique quantique (équation de Schrödinger généralisée) dont les solutions impliquent une structuration spatiale décrite par des pics de densité de probabilité. Après avoir rappelé notre formalisme de base, qui repose sur un double processus de Wiener à coefficient de diffusion constant (ce qui correspond à des trajectoires de dimension fractale 2), nous le généralisons à des dimensions fractales différentes puis à un coefficient de diffusion dépendant des coordonnées mais lentement variable.
    [Show full text]
  • Arxiv:1904.05739V1 [Physics.Gen-Ph] 31 Mar 2019 Fisidvda Constituents
    Riccati equations as a scale-relativistic gateway to quantum mechanics Saeed Naif Turki Al-Rashid∗ Physics Department, College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq Mohammed A.Z. Habeeb† Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq Stephan LeBohec‡ Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830, USA (Dated: April 12, 2019) Abstract Applying the resolution-scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Itˆoprocess driven by the solutions of a Riccati equation. We verify that the corresponding Fokker-Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schr¨odinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems in any number of dimensions. The Itˆoprocess is then driven by a function which is identified as establishing the link between non- differentiable dynamics and standard quantum mechanics. This is the basis for the scale relativistic arXiv:1904.05739v1 [physics.gen-ph] 31 Mar 2019 interpretation of standard quantum mechanics and, in the case of applications to chaotic systems, it leads us to identify quantum-like states as characterizing the entire system rather than the motion of its individual constituents. 1 I. INTRODUCTION Scale relativity was proposed by Laurent Nottale13,16,18 to extend the relativity principle to transformations of resolution-scales, which become additional relative attributes defin- ing reference frames with respect to one another.
    [Show full text]
  • Charles AUFFRAY Laurent NOTTALE Systems Biology and Scale
    Systems Biology and Scale Relativity Laboratoire Joliot Curie Ecole Normale Supérieure de Lyon March 2, 2011 Charles AUFFRAY [email protected] Laurent NOTTALE [email protected] Functional Genomics and Systems Biology for Health CNRS Institute of Biological Sciences - Villejuif Laboratory Universe and Theories CNRS - Paris-Meudon Observatory - Paris Diderot University Definitions of Integrative Systems Biology Integrative: interconnection of elements and properties Systems: coherent set of components with emerging properties Biology: science of life (Lamarck 1809) Field studying interactions of biological systems components Antithesis of analytical reductionism Iterative research strategy combining modeling and experiments Multi- Inter- and trans-disciplinary community effort Origins of Systems Biology in William Harvey’s Masterpiece on the Movement of the Heart and the Blood in Animals Charles Auffray and Denis Noble (2009) Int. J. Mol. Sci. 2009, 10:1658-1669. Definitions for Integrative Systems Biology The (emergent) properties and dynamic behaviour of a biological system are different (more or less) than those of its interacting (elementary or modular) components Combine discovery and hypothesis, data and question driven inquiries to identify the features necessary and sufficient to understand (explain and predict) the behaviour of biological systems under normal (physiological) or perturbed (environmental, disease or experimental) conditions Biology triggers technology development for accurate and inexpensive global measurements (nanotechnology, microfluidics, grid and high-performance computing) Models are (more or less abstract and accurate) representations The Theoretical Framework of Systems Biology Self-organized living systems: conjunction of a stable organization with chaotic fluctuations in biological space-time Auffray C, Imbeaud S, Roux-Rouquié M and Hood L (2003) Philos.
    [Show full text]
  • Laurent Nottale CNRS LUTH, Paris-Meudon Observatory
    http ://luth.obspm.fr/~luthier/nottale/ Effects on the equations of motion of the fractal structures of the geodesics of a nondifferentiable space Laurent Nottale" CNRS! LUTH, Paris-Meudon Observatory 1 References Nottale, L., 1993, Fractal Space-Time and Microphysics : Towards a Theory of Scale Relativity, World Scientific (Book, 347 pp.)! Chapter 5.6 : http ://luth.obspm.fr/~luthier/nottale/LIWOS5-6cor.pdf ! ! Nottale, L., 1996, Chaos, Solitons & Fractals, 7, 877-938. “Scale Relativity and Fractal Space-Time : Application to Quantum Physics, Cosmology and Chaotic systems”. ! http ://luth.obspm.fr/~luthier/nottale/arRevFST.pdf Nottale, L., 1997, Astron. Astrophys. 327, 867. “Scale relativity and Quantization of the Universe. I. Theoretical framework.” http ://luth.obspm.fr/~luthier/nottale/ arA&A327.pdf! Célérier Nottale 2004 J. Phys. A 37, 931(arXiv : quant- ph/0609161) ! “Quantum-classical transition in scale relativity”. ! http ://luth.obspm.fr/~luthier/nottale/ardirac.pdf ! ! Nottale L. & C élérier M.N., 2007, J. Phys. A : Math. Theor. 40, 14471-14498 (arXiv : 0711.2418 [quant-ph]). ! “Derivation of the postulates of quantum mechanics form the first principles of scale relativity”.! ! Nottale L., 2011, Scale Relativity and Fractal Space-Time (Imperial College Press 2011) Chapter 5.! ! 2 NON-DIFFERENTIABILITY Fractality Discrete symmetry breaking (dt) Infinity of Fractal Two-valuedness (+,-) geodesics fluctuations Fluid-like Second order term Complex numbers description in differential equations Complex covariant derivative 3 Dilatation operator (Gell-Mann-Lévy method): Taylor expansion: Solution: fractal of constant dimension + transition: 4 variation of the length variation of the scale dimension fractal fractal "scale inertia" transition transition scale - independent scale - ln L delta independent ln ε ln ε Dependence on scale of the length (=fractal coordinate) and of the effective fractal dimension = DF - DT Case of « scale-inertial » laws (which are solutions of a first order scale differential equation in scale space).
    [Show full text]
  • TIIEFRACTALSTRUCTURE of TIIE QUANTUM SPACE-T™E Laurent
    13 TIIEFRACTALSTRUCTURE OF TIIEQUANTUM SPACE-T™E Laurent Nottale CNRS. Departement d'Astrophysique Extragalactique et de Cosmologie. Observatoire de Meudon. F-92195 Meudon Cedex. France ABSTRACT. We sum up in this contribution the first results obtained in an attempt at understanding quantum physics in terms of non differential geometrical properties.I) It is proposed that the dependance of physical laws on spatio-temporal resolutions is the concern of a scale relativity theory, which could be achieved using the concept of a fractal space-time. We recall that the Heisenberg relations may be expressed by a universal fractal dimension 2 of all four coordinates of quantum "trajectories", and that such a point particle path has a finite proper angular momentum (spin) precisely in this case D=2. Then we comment on the possibility of a geodesical interpretation of the wave-particle duality. Finally we show that this approach may imply a break down of Newton gravitational law between two masses both smaller than the Planck mass. 14 1. INTRODUCTION The present contribution describes results obtained from an analysis of what may appear as inconsistencies and incompleteness in the present state of fu ndamental physics. We give here a summary of the principles to which we have been led and of some of our main results, which are fully described in Ref. 1. The first remark is that, following the Galileo/Mach/Einstein analysis of motion relativity, the non absolute character of space and space-time appears as an inescapable conclusion.2) The geometry of space-time should depend on its material and energetic content.
    [Show full text]
  • Scale-Relativistic Corrections to the Muon Anomalous Magnetic Moment
    Scale-relativistic correction to the muon anomalous magnetic moment Laurent Nottale LUTH, Observatoire de Paris-Meudon, F-92195 Meudon, France [email protected] April 20, 2021 Abstract The anomalous magnetic moment of the muon is one of the most precisely mea- sured quantities in physics. Its experimental value exhibits a 4.2 σ discrepancy −11 δaµ = (251 ± 59) × 10 with its theoretical value calculated in the standard model framework, while they agree for the electron. The muon theoretical calculation involves a mass-dependent contribution which comes from two-loop vacuum po- larization insertions due to electron-positron pairs and depends on the electron to muon mass ratio x = me/mµ. In standard quantum mechanics, mass ratios and inverse Compton length ratios are identical. This is no longer the case in the spe- cial scale-relativity framework, in which the Planck length-scale is invariant under dilations. Using the renormalization group approach, we differentiate between the origin of ln x logarithmic contributions which depend on mass, and x linear con- tributions which we assume to actually depend on inverse Compton lengths. By defining the muon constant Cµ = ln(mP/mµ) in terms of the Planck mass mP, the − 2 3 C2 resulting scale-relativistic correction writes δaµ = α (x ln x)/(8 µ), where α is the fine structure constant. Its numerical value, (230 ± 16) × 10−11, is in excellent agreement with the observed theory-experiment difference. The Dirac equation predicts a muon magnetic moment, Mµ = gµ(e/2mµ)S, with gyromagnetic ratio gµ = 2. Quantum loop effects lead to a small calculable deviation, parameterized by the anomalous magnetic moment (AMM) aµ =(gµ − 2)/2 [1].
    [Show full text]
  • Motion Equations for Relativistic Particles in an External Electromagnetic Field in Scale Relativity
    Motion equations for relativistic particles in an external electromagnetic field in scale relativity Marie-No¨elle C´el´erier and Laurent Nottale Laboratoire Univers et TH´eories (LUTH), Observatoire de Paris, CNRS & Universit´eParis Diderot 5 place Jules Janssen, 92190 Meudon, France e-mail: [email protected] October 3, 2018 Abstract Klein-Gordon and Dirac equations are the motion equations for rel- ativistic particles with spin 0 (so-called scalar particles) and 1/2 (elec- tron/positron) respectively. For a free particle, the Dirac equation is derived from the Klein-Gordon equation by taking its square root in a bi-quaternionic formalism fully justified by the first principles of the scale relativity theory. This is no more true when an external electro-magnetic field comes into play. If one tries to derive the electro-magnetic Dirac equation in a manner analogous to the one used when this field is ab- sent, one obtains an additional term which is the relativistic analogue of the spin-magnetic field coupling term encountered in the Pauli equation, valid for a non-relativistic particle with spin 1/2. There is however a method to recover the standard form of the electro-magnetic Dirac equa- tion, with no additional term, which amounts modifying the way both covariances involved here, quantum and scale, are implemented. Without going into technical details, it will be shown how these results suggest this last method is based on more profound roots of the scale relativity theory since it encompasses naturally the spin-charge coupling. 1 Introduction Scale relativity allows one to give foundations to the postulates [1] and motion equations [2, 3, 4, 5, 6] of quantum mechanics, and to gauge theories of particle physics [7], in particular to electromagnetism [3, 8], by providing them with a geometric interpretation in the framework of a fractal space-time.
    [Show full text]
  • Statistical Deprojection of Intervelocities, Interdistances, and Masses in the Isolated Galaxy Pair Catalog Laurent Nottale, Pierre Chamaraux
    Statistical deprojection of intervelocities, interdistances, and masses in the Isolated Galaxy Pair Catalog Laurent Nottale, Pierre Chamaraux To cite this version: Laurent Nottale, Pierre Chamaraux. Statistical deprojection of intervelocities, interdistances, and masses in the Isolated Galaxy Pair Catalog. Astronomy and Astrophysics - A&A, EDP Sciences, 2020, 641, pp.A115. 10.1051/0004-6361/202037940. hal-02943317 HAL Id: hal-02943317 https://hal.archives-ouvertes.fr/hal-02943317 Submitted on 18 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License A&A 641, A115 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037940 & c L. Nottale and P. Chamaraux 2020 Astrophysics Statistical deprojection of intervelocities, interdistances, and masses in the Isolated Galaxy Pair Catalog Laurent Nottale1 and Pierre Chamaraux2 1 LUTH, UMR CNRS 8102, Paris Observatory, 92195 Meudon Cedex, France e-mail: [email protected] 2 GEPI, UMR CNRS 8111, Paris Observatory, 92195 Meudon Cedex, France e-mail: [email protected] Received 12 March 2020 / Accepted 1 July 2020 ABSTRACT Aims. In order to study the internal dynamics of actual galaxy pairs, we need to derive the probability distribution function (PDF) of true 3D, orbital intervelocities and interdistances between pair members from their observed projected values along with the pair masses from Kepler’s third law.
    [Show full text]
  • A Theory of Turbulence Based on Scale Relativity
    A theory of turbulence based on scale relativity Louis de Montera Abstract The internal interactions of fluids occur at all scales therefore the resulting force fields have no reason to be smooth and differentiable. The release of the differentiability hypothesis has important mathematical consequences, like scale dependence and the use of a higher algebra. The law of mechanics transfers directly these properties to the velocity of fluid particles whose trajectories in velocity space become fractal and non-deterministic. The principle of relativity is used to find the form of the equation governing velocity in scale space. The solution of this equation contains a fractal and a non-fractal term. The fractal part is shown to be equivalent to the Lagrangian version of the Kolmogorov law of fully-developed and isotropic turbulence. It is therefore associated with turbulence, whereas the non-fractal deterministic term is associated with a laminar behavior. These terms are found to be balanced when the typical velocity reaches a level at which the Reynolds number is equal to one, in agreement with the empirical observations. The rate of energy dissipated by turbulence in a flow passing an obstacle that was only known from experiments can be derived theoretically from the equation's solution. Finally, a quantum-like equation in velocity space is proposed in order to find the probability of having a given velocity at a given location. It may eventually explain the presence of large scale coherent structures in geophysical turbulent flows, like jet-streams. 1 Introduction The classical approaches to tackle the turbulence problem are usually of two kinds.
    [Show full text]
  • Scale Relativity and Fractal Space-Time: Theory and Applications
    Scale relativity and fractal space-time: theory and applications L. Nottale CNRS, LUTH, Paris Observatory and Paris-Diderot University 92190 Meudon, France [email protected] December 22, 2008 Abstract In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmo- logical constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-periodic law for species punctuated evolution, human development and society evolution), to Earth sciences (log-periodic decelera- tion of the rate of California earthquakes and of Sichuan earthquake replicas, critical law for the arctic sea ice extent) and tentative applications to system biology. arXiv:0812.3857v1 [physics.gen-ph] 19 Dec 2008 1 Introduction One of the main concern of the theory of scale relativity is about the foundation of quantum mechanics. As it is now well known, the principle of relativity (of motion) underlies the foundation of most of classical physics.
    [Show full text]
  • Stochastic Modication of Newtonian Dynamics and Induced Potential
    Stochastic modication of Newtonian dynamics and Induced potential -application to spiral galaxies and the dark potential Jacky Cresson, Laurent Nottale, Thierry Lehner To cite this version: Jacky Cresson, Laurent Nottale, Thierry Lehner. Stochastic modication of Newtonian dynamics and Induced potential -application to spiral galaxies and the dark potential. 2020. hal-03006560 HAL Id: hal-03006560 https://hal.archives-ouvertes.fr/hal-03006560 Preprint submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Stochastic modication of Newtonian dynamics and Induced potential - application to spiral galaxies and the dark potential Jacky Cresson(a), Laurent Nottale(b), Thierry Lehner(b) November 12, 2020 (a) Laboratoire de Mathématiques Appliquées de Pau UMR 5142 CNRS, Université de Pau et des Pays de l'Adour, E2S UPPA, Avenue de l'Université, BP 1155, 64013 Pau Cedex, France. (b) Paris-Sciences-Lettres, Laboratoire Univers et Théories (LUTH) UMR CNRS 8102, Observatoire de Paris, 5 Place Jules Janssen, 92190 Meudon, France. Abstract Using the formalism of stochastic embedding developed by [J. Cresson, D. Darses, J. Math. Phys. 48, 072703 (2007)], we study how the dynamics of the classical Newton equation for a force deriving from a potential is deformed under the assumption that this equation can admit stochastic processes as solutions.
    [Show full text]