Gravitational Lensing As a Probe for Dark Matier
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laurent Nottale CNRS LUTH, Paris-Meudon Observatory Scales in Nature
Laurent Nottale CNRS LUTH, Paris-Meudon Observatory http://www.luth.obspm.fr/~luthier/nottale/ Scales in nature 1 10 -33 cm Planck scale 10 -28 cm Grand Unification 10 10 accelerators: today's limit 10 -16 cm electroweak unification 20 10 3 10 -13 cm quarks 4 10 -11 cm electron Compton length 1 Angstrom Bohr radius atoms 30 virus 10 40 microns bacteries 1 m human scale 40 10 6000 km Earth radius 700000 km Sun radius 1 millard km Solar System 50 10 1 parsec distances to Stars 10 kpc Milky Way radius 1 Mpc Clusters of galaxies 60 100 Mpc very large structures 10 28 10 cm Cosmological scale Scales of living systems Relations between length-scales and mass- scales l/lP = m/mP (GR) l/lP = mP / m (QM) FIRST PRINCIPLES RELATIVITY COVARIANCE EQUIVALENCE weak / strong Action Geodesical CONSERVATION Noether SCALE RELATIVITY Continuity + Giving up the hypothesis Generalize relativity of differentiability of of motion ? space-time Transformations of non- differentiable coordinates ? …. Theorem Explicit dependence of coordinates in terms of scale variables + divergence FRACTAL SPACE-TIME Complete laws of physics by fundamental scale laws Constrain the new scale laws… Principle of scale relativity Generalized principle Scale covariance of equivalence Linear scale-laws: “Galilean” Linear scale-laws : “Lorentzian” Non-linear scale-laws: self-similarity, varying fractal dimension, general scale-relativity, constant fractal dimension, scale covariance, scale dynamics, scale invariance invariant limiting scales gauge fields Continuity + Non-differentiability -
New Formulation of Stochastic Mechanics. Application to Chaos
1 NEW FORMULATION OF STOCHASTIC MECHANICS. APPLICATION TO CHAOS by Laurent NOTTALE CNRS, Observatoire de Paris-Meudon (DAEC) 5, place Janssen, F-92195 Meudon Cedex, France 1. Introduction 2. Basic Formalism 3. Generalization to Variable Diffusion Coefficient 3.1. Fractal dimension different from 2 3.2. Position-dependent diffusion coefficient 4. Application to Celestial Mechanics 4.1. Distribution of eccentricities of planets 4.2. Distribution of planet distances 4.3. Distribution of mass in the solar system 4.4. Distribution of angular momentum 5. Discussion and Conclusion References Nottale, L., 1995, in "Chaos and diffusion in Hamiltonian systems", Proceedings of the fourth workshop in Astronomy and Astrophysics of Chamonix (France), 7-12 February 1994, Eds. D. Benest et C. Froeschlé (Editions Frontières), pp 173-198. 2 Nouvelle formulation de la mécanique stochastique Application au chaos résumé Nous développons une nouvelle méthode pour aborder le problème de l’émergence de structures telle qu'on peut l'observer dans des systèmes fortement chaotiques. Cette méthode s’applique précisément quand les autres méthodes échouent (au delà de l’horizon de prédictibilité), c’est à dire sur les très grandes échelles de temps. Elle consiste à remplacer la description habituelle (en terme de trajectoires classiques déterminées) par une description stochastique, approchée, en terme de familles de chemins non différentiables. Nous obtenons ainsi des équations du type de celles de la mécanique quantique (équation de Schrödinger généralisée) dont les solutions impliquent une structuration spatiale décrite par des pics de densité de probabilité. Après avoir rappelé notre formalisme de base, qui repose sur un double processus de Wiener à coefficient de diffusion constant (ce qui correspond à des trajectoires de dimension fractale 2), nous le généralisons à des dimensions fractales différentes puis à un coefficient de diffusion dépendant des coordonnées mais lentement variable. -
Arxiv:1904.05739V1 [Physics.Gen-Ph] 31 Mar 2019 Fisidvda Constituents
Riccati equations as a scale-relativistic gateway to quantum mechanics Saeed Naif Turki Al-Rashid∗ Physics Department, College of Education for Pure Sciences, University Of Anbar, Ramadi, Iraq Mohammed A.Z. Habeeb† Department of Physics, College of Science, Al-Nahrain University, Baghdad, Iraq Stephan LeBohec‡ Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112-0830, USA (Dated: April 12, 2019) Abstract Applying the resolution-scale relativity principle to develop a mechanics of non-differentiable dynamical paths, we find that, in one dimension, stationary motion corresponds to an Itˆoprocess driven by the solutions of a Riccati equation. We verify that the corresponding Fokker-Planck equation is solved for a probability density corresponding to the squared modulus of the solution of the Schr¨odinger equation for the same problem. Inspired by the treatment of the one-dimensional case, we identify a generalization to time dependent problems in any number of dimensions. The Itˆoprocess is then driven by a function which is identified as establishing the link between non- differentiable dynamics and standard quantum mechanics. This is the basis for the scale relativistic arXiv:1904.05739v1 [physics.gen-ph] 31 Mar 2019 interpretation of standard quantum mechanics and, in the case of applications to chaotic systems, it leads us to identify quantum-like states as characterizing the entire system rather than the motion of its individual constituents. 1 I. INTRODUCTION Scale relativity was proposed by Laurent Nottale13,16,18 to extend the relativity principle to transformations of resolution-scales, which become additional relative attributes defin- ing reference frames with respect to one another. -
Charles AUFFRAY Laurent NOTTALE Systems Biology and Scale
Systems Biology and Scale Relativity Laboratoire Joliot Curie Ecole Normale Supérieure de Lyon March 2, 2011 Charles AUFFRAY [email protected] Laurent NOTTALE [email protected] Functional Genomics and Systems Biology for Health CNRS Institute of Biological Sciences - Villejuif Laboratory Universe and Theories CNRS - Paris-Meudon Observatory - Paris Diderot University Definitions of Integrative Systems Biology Integrative: interconnection of elements and properties Systems: coherent set of components with emerging properties Biology: science of life (Lamarck 1809) Field studying interactions of biological systems components Antithesis of analytical reductionism Iterative research strategy combining modeling and experiments Multi- Inter- and trans-disciplinary community effort Origins of Systems Biology in William Harvey’s Masterpiece on the Movement of the Heart and the Blood in Animals Charles Auffray and Denis Noble (2009) Int. J. Mol. Sci. 2009, 10:1658-1669. Definitions for Integrative Systems Biology The (emergent) properties and dynamic behaviour of a biological system are different (more or less) than those of its interacting (elementary or modular) components Combine discovery and hypothesis, data and question driven inquiries to identify the features necessary and sufficient to understand (explain and predict) the behaviour of biological systems under normal (physiological) or perturbed (environmental, disease or experimental) conditions Biology triggers technology development for accurate and inexpensive global measurements (nanotechnology, microfluidics, grid and high-performance computing) Models are (more or less abstract and accurate) representations The Theoretical Framework of Systems Biology Self-organized living systems: conjunction of a stable organization with chaotic fluctuations in biological space-time Auffray C, Imbeaud S, Roux-Rouquié M and Hood L (2003) Philos. -