The Next Generation Spectrograph for the Very Large Telescope

Total Page:16

File Type:pdf, Size:1020Kb

The Next Generation Spectrograph for the Very Large Telescope JANUARY 2015 ISSUE 13 News from the Cavendish Laboratory Maxwell Centre On-site Construction MOONS: the Next Generation Cavendish Kinetics Spectrograph for the DNA Origami Flying UAVs above SKA Antennae Very Large Telescope Global Challenges for Science and Technology EDITORIAL NEWS After 6 years and 12 issues, our graphic designer Matt Bilton and I decided that Maxwell Centre On-site we should freshen up the design of CavMag, in keeping with the practice Construction Begins of most journals. We aim to keep the content at as high a level of interest as before, but with the ability to try out some experiments. In this edition, we experiment with instructions for an origami Kapitsa crocodile, with a suitable “brick” effect insert, inspired by the DNA origami described by Ulrich Keyser in CavMag 9 and in a further essay in this issue by Kerstin Göpfrich. Be warned, this is a significant paper-folding challenge! We always welcome suggestions for interesting articles and for information about alumni, their distinctions and achievements. On behalf of everyone in the Cavendish, we wish readers a Very Happy and Prosperous 2015. Malcolm Longair INSIDE Maxwell Centre On-site Construction Begins 2 ork has begun on the and exposing the best early career Chris Carilli - John Baldwin Director of £26 million Maxwell Centre. researchers to scientific problem-solving Research 3 To mark the beginning that relates directly to industrial needs. Cavendish Kinetics 4 of on-site activities, an Wopening event was hosted by the At the event, Richard Friend, Cavendish Flying UAVs above SKA Antennas at Lord’s Bridge 6 contractors SDC Builders Ltd. As is Professor of Physics, who will be the apparent from the picture, excellent first Director of the Centre, said: “This MOONS: the Next Generation Spectrograph for the Very Large Telescope 8 progress has been maintained towards building will affect how we work a completion date in the last quarter of together and promote the free-flow of Global Challenges for Science and Technology 10 2015. Once completed, the building will ideas, providing the right sort of meeting DNA Origami - Folding on the Smallest Scale 12 offer laboratory and meeting spaces for places for people to generate innovative Make your own Origami Crocodile 13 more than 230 people. research. The Maxwell Centre design means it is a building that brings in Kapitsa’s Crocodile 16 The new facilities will result in research other departments such as Chemistry DIY Physics with Advanced Sensors 17 scientists from industry occupying and Material Sciences. It will also very New Faces 18 laboratory and desk space alongside much promote engagement with members of the collaborating industry, large and small, showing that Outreach 22 Cambridge research groups, with the we recognise industry as a source of Cavendish News 23 aim of creating a two-way flow of ideas intellectual innovation”. ABOVE: Some of those involved in the design and construction phase of the Maxwell Centre project. In the front row, from left to right, Angus Stephen (Director of Operations, Estates Management), Andy Parker (Head of Cavendish), Malcolm Longair (Cavendish Director of Development), Francis Shiner (Managing Director of SDC Builders Ltd) and Richard Friend (Cavendish Professor and Director of the Maxwell Centre). Cover image: Aerial view of Paranal Observatory © ESO/C.Madsen, H.Zodet 2 Chris Carilli – John Baldwin Director of Research In CavMag11, we were delighted to announce the appointment of Chris Carilli in a part-time capacity as Director of Research in the Cavendish Astrophysics Group. We are pleased that this position has been designated the John Baldwin Directorship of Research, in honour of the late John Baldwin who pioneered many advanced techniques in radio, infrared and optical astronomy. hris Carilli is a world leading radio Array. His edited volume, Science with a field entails using the 21cm emission line astronomer, exploring the radio Square Kilometre Array, with the late Steve of neutral hydrogen atoms to observe Universe from the Milky Way to the Rawlings of Oxford University, has stood the evolution of large scale structures in most distant galaxies. He was a for over a decade as the standard reference the Universe during the epoch of cosmic CPhD student at the Massachusetts Institute for setting the scientific programme for the reionization, and the preceding dark ages. of Technology, where he performed next generation of mega-radio facilities. During these epochs, the first galaxies definitive work on the physics of the Likewise, the edited lectures on Synthesis emerged from the diffuse intergalactic archetypal powerful radio galaxy, Cygnus Imaging in Radio Astronomy II, with G. Taylor gas that pervaded the early Universe. He is A. His postdoctoral work at the Harvard- and R. Perley, remain the standard textbook involved with a team that has constructed a Smithsonian Center for Astrophysics, and at for radio astronomy schools worldwide. novel low frequency telescope in the Karoo Leiden University, extended these studies desert of South Africa to perform the first to the most distant galaxies known at Chris's current research focuses on the measurements of the HI signal. the time, namely, the high redshift radio formation of the first galaxies in the galaxies. Universe. Using centimetre and millimetre In 2005 Chris was honoured with the Max telescopes, Chris is investigating the Planck Research Award, awarded jointly Since his student and postdoc years, Chris evolution of the cool gas and dust by the Humboldt Society and the Max has been an astronomer at the US National component of galaxies within 1 Gyr of the Planck Society. Chris was also a visiting Radio Astronomy Observatory. For the Big Bang. These constituents represent the Humboldt Fellow in Bonn in 1999. We are last 6 years he has been the Observatory fuel for star formation in galaxies, driving delighted to have Chris as a member of the Chief Scientist. Chris has been instrumental the formation of the earliest generation of Astrophysics Group where he will support in defining the science programme and stars within galaxies. many of our activities in radio astronomy design of major radio facilities, such as the and cosmology. Jansky Very Large Array, the Atacama Large In parallel, Chris is a pioneer in the area of Millimetre Array, and the Square Kilometre HI 21cm cosmology. This rapidly emerging JANUARY 2015 ISSUE 13 3 RESEARCH AND INDUSTRY Cavendish Kinetics – From Fundamental Research to Mobile Phones CHARLES SMITH describes the tortuous route from fundamental physics to commercial products with the potential to be used in billions of mobile phones. an research into the A number of years ago I was making to perform binary logic computations understanding of low small metal bridges across a man-made in all semiconductor computer chips temperature quantum Lilliputian canyon to study the quantisation manufactured today. I made some simple phenomena result in of thermal properties. Ten million of these estimates concerning how a metal switch applications that could improve bridges set side by side would fit in 1mm would behave when shrunk to these the quality of life of the wider and they spanned a gap one hundred nanoscale dimensions and to my surprise Ccommunity? There are obvious cultural times bigger than their width. At the I discovered that their small mass and benefits from knowing how the universe extremely low temperature of only 300 mK reduced spring constants meant that works, but can this type of fundamental above absolute zero, the thermal properties such a switch could be operated at low research have more tangible rewards that become quantised as only an integral voltages and at very high speeds. This could have a positive impact on our day to number of lattice vibrations can fit within could provide a simple low power switch, day activities? the wire (Fig. 2). It was while performing which if designed correctly, could be made this research that I became interested in the bi-stable. When manufactured into an My research involves investigating how idea of turning these structures into simple array it could have applications for storing carrier transport in conductors and metal switches. I wondered how such information with the advantage of being semiconductors changes as they are made a device would perform in comparison faster to program and erase and consume extremely small. The computer chips in with the semiconductor devices used lower power. mobile phones and laptops now have billions of devices on a chip of silicon a few millimetres on a side. To fit these in, the smallest feature sizes can be so small that a million devices side by side would fit in a length of just 11mm. Every two years the minimum device size shrinks to allow two times as many devices to fit on a chip of the same area making them faster and cheaper. The technological advances which have revolutionised the semiconductor industry over the last 40 years are used by the Semiconductor Physics Group for studying quantum phenomena where the wave nature of matter becomes important when the devices are cooled to 50 mK, close to absolute zero (Fig 1). This technique was pioneered by the former Group Head, Michael Pepper, and is now used in hundreds of research laboratories around the world to investigate quantum phenomena in solids. FIG 1. 4 “ As an academic, I was faced with semiconductor processing factories. In commercial technologies - fundamental a difficult choice. Either I could 2007 a second round of funding led to the studies can also lead to products with setting up of a larger development activity commercial value. publish this idea and allow others in a facility in San Jose and the movement to follow it up, or I could take of the head office to California.
Recommended publications
  • The Royal Society Medals and Awards
    The Royal Society Medals and Awards Table of contents Overview and timeline – Page 1 Eligibility – Page 2 Medals open for nominations – Page 8 Nomination process – Page 9 Guidance notes for submitting nominations – Page 10 Enquiries – Page 20 Overview The Royal Society has a broad range of medals including the Premier Awards, subject specific awards and medals celebrating the communication and promotion of science. All of these are awarded to recognise and celebrate excellence in science. The following document provides guidance on the timeline and eligibility criteria for the awards, the nomination process and our online nomination system Flexi-Grant. Timeline • Call for nominations opens 30 November 2020 • Call for nominations closes on 15 February 2021 • Royal Society contacts suggested referees from February to March if required. • Premier Awards, Physical and Biological Committees shortlist and seek independent referees from March to May • All other Committees score and recommend winners to the Premier Awards Committee by April • Premier Awards, Physical and Biological Committees score shortlisted nominations, review recommended winners from other Committees and recommend final winners of all awards by June • Council reviews and approves winners from Committees in July • Winners announced by August Eligibility Full details of eligibility can be found in the table. Nominees cannot be members of the Royal Society Council, Premier Awards Committee, or selection Committees overseeing the medal in question. More information about the selection committees for individual medals can be found in the table below. If the award is externally funded, nominees cannot be employed by the organisation funding the medal. Self-nominations are not accepted.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra
    A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Diamond-Lowe, Hannah Zoe. 2020. A First Reconnaissance of the Atmospheres of Terrestrial Exoplanets Using Ground-Based Optical Transits and Space-Based UV Spectra. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365825 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra A DISSERTATION PRESENTED BY HANNAH ZOE DIAMOND-LOWE TO THE DEPARTMENT OF ASTRONOMY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF ASTRONOMY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS MAY 2020 c 2020 HANNAH ZOE DIAMOND-LOWE.ALL RIGHTS RESERVED. ii Dissertation Advisor: David Charbonneau Hannah Zoe Diamond-Lowe A first reconnaissance of the atmospheres of terrestrial exoplanets using ground-based optical transits and space-based UV spectra ABSTRACT Decades of ground-based, space-based, and in some cases in situ measurements of the Solar System terrestrial planets Mercury, Venus, Earth, and Mars have provided in- depth insight into their atmospheres, yet we know almost nothing about the atmospheres of terrestrial planets orbiting other stars.
    [Show full text]
  • Imaging the Dynamical Atmosphere of the Red Supergiant Betelgeuse in the CO first Overtone Lines with VLTI/AMBER,
    A&A 529, A163 (2011) Astronomy DOI: 10.1051/0004-6361/201016279 & c ESO 2011 Astrophysics Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER, K. Ohnaka1,G.Weigelt1,F.Millour1,2, K.-H. Hofmann1, T. Driebe1,3, D. Schertl1,A.Chelli4, F. Massi5,R.Petrov2,andPh.Stee2 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany e-mail: [email protected] 2 Observatoire de la Côte d’Azur, Departement FIZEAU, Boulevard de l’Observatoire, BP 4229, 06304 Nice Cedex 4, France 3 Deutsches Zentrum für Luft- und Raumfahrt e.V., Königswinterer Str. 522-524, 53227 Bonn, Germany 4 Institut de Planétologie et d’Astrophysique de Grenoble, BP 53, 38041 Grenoble Cedex 9, France 5 INAF-Osservatorio Astrofisico di Arcetri, Instituto Nazionale di Astrofisica, Largo E. Fermi 5, 50125 Firenze, Italy Received 7 December 2010 / Accepted 12 March 2011 ABSTRACT Aims. We present one-dimensional aperture synthesis imaging of the red supergiant Betelgeuse (α Ori) with VLTI/AMBER. We reconstructed for the first time one-dimensional images in the individual CO first overtone lines. Our aim is to probe the dynamics of the inhomogeneous atmosphere and its time variation. Methods. Betelgeuse was observed between 2.28 and 2.31 μm with VLTI/AMBER using the 16-32-48 m telescope configuration with a spectral resolution up to 12 000 and an angular resolution of 9.8 mas. The good nearly one-dimensional uv coverage allows us to reconstruct one-dimensional projection images (i.e., one-dimensional projections of the object’s two-dimensional intensity distri- butions).
    [Show full text]
  • Meeting Reports
    AUGUST 2014 MEETING Speaker: Andrew Conacher Topic: Sir Humphry Davy – The Davy Lamp Andrew’s talk on Sir Humphry Davy was most engaging and enjoyable. He firstly spoke on Sir Humphry’s background and life and then focused on the Davy Lamp, its context and importance. Andrew indicated that he has an ancestral family connection to Sir Humphry. The following is a brief extract from Andrew’s paper. Sir Humphry was born on 17 December 1778 in Penzance, Cornwall, England and died 29 May 1829 in Geneva, Switzerland aged 50 years. A statue stands in Penzance with him holding his safety lamp. Andrew Conacher holds up miner’s safety lamps. He was both a chemist and inventor Picture: KIRK GILMOUR, Wollongong Advertiser 6 August 2014 and was also a poet and painter. He enthusiastically turned to science and later became a professor at the Royal Institution and flame (acting as a flame arrestor) presented a series of lectures which were later published. thus preventing the methane gas burning inside the lamp to pass out He worked with a number of scientists of the day (for into the atmosphere. The lamp also example, Sir Joseph Banks, who interviewed Davy for his provided a test for the presence of role at the Royal Institution and Michael Faraday who was gases. If flammable gases were a co-worker with him) and was a popular public figure. present the flame of the lamp He made a number of scientific discoveries (for example, burnt higher and with a blue tinge. electrolysis, sodium, potassium, barium) and was knighted The lamp saved lives and helped in1812 and awarded a baronetcy in 1819.
    [Show full text]
  • The Royal Society Medals and Awards Overview
    The Royal Society medals and awards Overview The Royal Society has a broad range of medals including premier awards, subject specific awards and medals celebrating the communication and promotion of science. All of these work to recognise and celebrate excellence in science. The following document provides guidance in the eligibility criteria for the awards, the nomination process and online nomination system. Eligibility Awards are open to citizens of a Commonwealth country or of the Irish Republic or those who have been ordinarily resident and working in a Commonwealth country or in the Irish Republic for a minimum of three years immediately prior to being proposed. Three of our premier awards are open internationally and the Milner Award is open to European citizens and residents of 12 months or more. Full details of eligibility can be found in Appendix one. Nominees cannot be members of the Royal Society Council, Premier Awards Committee, or selection Committees. If the award is externally funded, nominees cannot be employed by the organisation funding the medal. Self-nominations are not accepted and members of the selection Committee cannot nominate for their own awards. Nominations are valid for three cycles of the award unless otherwise stated. Nominators are given the opportunity to update nominations in December each year. The full list of medals that will be open in November 2017 are: Copley Medal Royal Medals (biological, physical and interdisciplinary) Croonian Medal and Lecture Bakerian Medal and Lecture Buchanan Medal
    [Show full text]
  • Eso 16 Metre Very Large Telescope: the Linear Array Concept
    767 ESO 16 METRE VERY LARGE TELESCOPE: THE LINEAR ARRAY CONCEPT Daniel Enard European Southern Observatory Karl-Schwarzschild-Str. 2, D-8046 Garching Introduction: Historical background and present organization VLT preliminary studies were initiated at ESO as early as 1978 (1). After ESO's move from Geneva to Munich (1980) a study group chaired first by R. Wilson, then by J.P. Swings was set up and among a number of conceptual ideas that were analysed, the concept of a "limited array" emerged as the most attractive (2). A significant driver was then, interferometry; however after a theoretical analysis performed by F. Roddier and P. Lena (3), it became clear that interferometry with large telescopes would not be cost-effective in the visible range. In the IR, the situation would be more favorable but the overall efficiency would depend on factors that are not reliably known at present. The conclusion was that it might be difficult to justify a huge investment too exclusively oriented towards interferometry, such as an array of movable large telescopes, but on the other hand the possibility of a coherent coupling in the IR should be maintained as a prime requirement since new developments in detectors and in adaptive optics could make it effective and scientifically very rewarding. After the ESO VLT workshop in Cargese it was decided to create a fully dedicated project group in order to carry out the preliminary studies. This group was effectively created in October '83 and is expected to be fully operational by the end of '84. The project group will be advised on scientific matters by a Scientific Working Group and specialized sub-groups whose task is basically to define the various instruments and to study their feasibility; these studies will be essential to set the detailed scientific objectives and to define the relevant telescope requirements.
    [Show full text]
  • Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming
    Draft version August 13, 2020 A Typeset using L TEX default style in AASTeX63 Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming of Betelgeuse Andrea K. Dupree,1 Klaus G. Strassmeier,2 Lynn D. Matthews,3 Han Uitenbroek,4 Thomas Calderwood,5 Thomas Granzer,2 Edward F. Guinan,6 Reimar Leike,7 Miguel Montarges` ,8 Anita M. S. Richards,9 Richard Wasatonic,10 and Michael Weber2 1Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, MS-15, Cambridge, MA 02138, USA 2Leibniz-Institut f¨ur Astrophysik Potsdam (AIP), Germany 3Massachusetts Institute of Technology, Haystack Observatory, 99 Millstone Road, Westford, MA 01886 USA 4National Solar Observatory, Boulder, CO 80303 USA 5American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 6Astrophysics and Planetary Science Department, Villanova University, Villanova, PA 19085, USA 7Max Planck Institute for Astrophysics, Karl-Schwarzschildstrasse 1, 85748 Garching, Germany, and Ludwig-Maximilians-Universita`at, Geschwister-Scholl Platz 1,80539 Munich, Germany 8Institute of Astronomy, KU Leuven, Celestinenlaan 200D B2401, 3001 Leuven, Belgium 9Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL, Manchester UK 10Astrophysics and Planetary Science Department, Villanova University, Villanova, PA 19085 USA (Received June 26, 2020; Revised July 9, 2020; Accepted July 10, 2020; Published August 13, 2020) Submitted to ApJ ABSTRACT The bright supergiant, Betelgeuse (Alpha Orionis, HD 39801) experienced a visual dimming during 2019 December and the first quarter of 2020 reaching an historic minimum 2020 February 7−13. Dur- ing 2019 September-November, prior to the optical dimming event, the photosphere was expanding. At the same time, spatially resolved ultraviolet spectra using the Hubble Space Telescope/Space Tele- scope Imaging Spectrograph revealed a substantial increase in the ultraviolet spectrum and Mg II line emission from the chromosphere over the southern hemisphere of the star.
    [Show full text]
  • The Thermal Emission of the Young and Massive Planet Corot-2B at 4.5 and 8 Mu M
    University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 mu m M. Gillon A. A. Lanotte T. Barman N. Miller B. -O. Demory See next page for additional authors Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Gillon, M.; Lanotte, A. A.; Barman, T.; Miller, N.; Demory, B. -O.; Deleuil, M.; Montalbán, J.; Bouchy, F.; Cameron, A. Collier; Deeg, H. J.; Fortney, J. J.; Fridlund, M.; Harrington, J.; Magain, P.; Moutou, C.; Queloz, D.; Rauer, H.; Rouan, D.; and Schneider, J., "The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 mu m" (2010). Faculty Bibliography 2010s. 186. https://stars.library.ucf.edu/facultybib2010/186 Authors M. Gillon, A. A. Lanotte, T. Barman, N. Miller, B. -O. Demory, M. Deleuil, J. Montalbán, F. Bouchy, A. Collier Cameron, H. J. Deeg, J. J. Fortney, M. Fridlund, J. Harrington, P. Magain, C. Moutou, D. Queloz, H. Rauer, D. Rouan, and J. Schneider This article is available at STARS: https://stars.library.ucf.edu/facultybib2010/186 A&A 511, A3 (2010) Astronomy DOI: 10.1051/0004-6361/200913507 & c ESO 2010 Astrophysics The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm, M.
    [Show full text]
  • Peer Review College Newsletter
    Peer Review College Newsletter Winter 2014 Launch of New EPSRC Strategic plan CONTENTS Over the last five years the national and international research landscape, and the 1. Launch of New EPSRC context in which EPSRC operates, have changed and continue to develop. To take Strategic plan – page 1 account of this new environment our Strategic Plan has been up-dated, with input from our partners and communities, recognising external influences including 2. EPSRC Policy on the Use the international research landscape, global economic situation and government of Animals in Research strategies. – page 1 We have developed our goals and strategies to reflect this changing landscape and 3. College Member On-line to ensure we maintain focus on our ambitious and unwavering vision: for the UK to Training – page 3 be the best place in the world to research, discover and innovate. Our Strategic Plan also recognises the importance of working in partnership if the UK is to maintain its 4. EPSRCs Peer Review position as a world-leading location for high quality research, and be equally renowned Extranet – page 4 for its innovation. 5. Return for Amendments EPSRC’s CEO, Professor Philip Nelson said: “Our Strategic Plan describes the – page 4 potential of UK science and engineering, its importance to addressing the global and 6. The importance of Pre- domestic challenges that range from energy security to healthcare, and the vital role scores – page 5 it plays in economic growth by fuelling technological progress. It sets out how EPSRC, in partnership with the academic community and industry partners, will unlock that 7.
    [Show full text]
  • Humphry Davy, Nitrous Oxide, the Pneumatic Institution, and the Royal Institution
    Am J Physiol Lung Cell Mol Physiol 307: L661–L667, 2014. First published August 29, 2014; doi:10.1152/ajplung.00206.2014. Perspectives Humphry Davy, nitrous oxide, the Pneumatic Institution, and the Royal Institution John B. West Department of Medicine, University of California San Diego, La Jolla, California Submitted 23 July 2014; accepted in final form 18 August 2014 West JB. Humphry Davy, nitrous oxide, the Pneumatic Institu- magnesium, boron, and barium. Davy is also well known as the tion, and the Royal Institution. Am J Physiol Lung Cell Mol Phy- person responsible for developing the miner’s safety lamp. siol 307: L661–L667, 2014. First published August 29, 2014; There is an extensive literature on Davy. A readable intro- doi:10.1152/ajplung.00206.2014.—Humphry Davy (1778–1829) has an duction is Hartley’s (8). The biography by Knight (10) is more interesting place in the history of respiratory gases because the detailed and contains useful citations to primary sources. Tre- Pneumatic Institution in which he did much of his early work signaled neer (17) wrote another biography with an emphasis on Davy’s the end of an era of discovery. The previous 40 years had seen relations with other people including his wife and also Faraday. essentially all of the important respiratory gases described, and the Partington (12) is authoritative on his chemical research. Institution was formed to exploit their possible value in medical Davy’s collected works are available (6). treatment. Davy himself is well known for producing nitrous oxide and demonstrating that its inhalation could cause euphoria and height- Early Years ened imagination.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae: Professor Sir Richard Friend, FRS, FREng Cavendish Laboratory, JJ Thomson Avenue Cambridge CB3 OHE Current University Positions: Cavendish Professor of Physics, University of Cambridge Director, Winton Programme for the Physics of Sustainability, www.winton.phy.cam.ac.uk Director, Maxwell Centre, http://www.cam.ac.uk/research/news/new-centre-will-bring-together-frontier-physics-research- and-the-needs-of-industry 1977- Fellow, St. John's College, Cambridge Visiting University Positions: 2003 Mary Shepard B Upson Visiting Professor, Cornell University, USA 2006-2011 Tan Chin Tuan Centennial Professor, National University of Singapore 2009-2015 Distinguished Visiting Professor, Department of Electrical Engineering, Technion, Israel 2011-2014 Honoured Professor, College of Materials Science and Engineering, South China University of Technology 2014 Visiting Miller Professor, University of California, Berkeley 2015 Heising-Simons Fellow, Kavli Energy Nanoscience Institute, University of California, Berkeley Prizes, etc. 1988 Charles Vernon Boys Prize of the Institute of Physics 1991 Royal Society of Chemistry Interdisciplinary Award 1993 Fellow of Royal Society of London 1996 Hewlett-Packard Prize of the European Physical Society 1998 Rumford Medal of the Royal Society of London 2000 Honorary Doctorate, University of Linkoping, Sweden 2001 Italgas prize for research and technological innovation (shared with Jean-Luc Brédas) 2002 Honorary Doctorate, University of Mons-Hainaut, Belgium 2002 Silver Medal, Royal Academy of
    [Show full text]