Noise Reduction and Isolation

Total Page:16

File Type:pdf, Size:1020Kb

Noise Reduction and Isolation Noise Reduction and Isolation CONTROLLING NOISE Control Panel Grounding Controlling noise in measurement systems is vital because it can become a serious problem Utility Circuit breaker Control even in the best instruments and data acquisi- distribution box panel transformer tion hardware. Most laboratories and industrial Hot phase A environments contain abundant electrical-noise sources, including AC power lines, heavy Hot phase B machinery, radio and TV stations, and a variety of electronic equipment. Radio stations generate Neutral high-frequency noise, while computers and Ground other electronic equipment generate noise in all frequency ranges. Building a completely noise- Earth Earth Enclosure free environment just for running tests and ground ground ground measurements is seldom a practical solution. Fortunately, simple devices and techniques such Fig. 10.01. Utility power transformers are typically as using proper grounding methods, shielded grounded to earth ground near the transformer, and and twisted wires, signal averaging methods, again at the input to the electrical junction box or filters, and differential input voltage amplifiers first switching panel. The switching panel, in turn, can control the noise in most measurements. may be connected to a rod driven into the earth to ensure that it too is at true ground potential. Some techniques preventFigure noise 10.01 from entering the system, while others remove extraneous noise from the signal. panel in the wired path to the eventual load. (See Figure 10.01.) The ground is a point within the THE GROUNDING CONFLICT panel connected to a nearby earth ground rod. A non-technical dictionary defines the term Typically, a large or significant structure (building ground as a place in contact with the earth, a frame) or metallic system (plumbing) is also common return in an electrical circuit, and an connected to the same point. This minimizes arbitrary point of zero voltage potential. voltage differences that may develop between a Grounding, or connecting some part of an elec- water pipe and an appliance with a three-wire trical circuit to ground ensures safety for personnel grounded cord, for example. An electrical fault and it usually improves circuit operation. such as a non-grounded conductor contacting a Unfortunately, a safe environment and a robust metal object is designed to open a fuse or trip a ground system often do not happen simultane- breaker rather than leave an electrically energized ously. It takes planning based on systematically appliance at a higher potential than a nearby understanding how electricity behaves in various water pipe or a sink faucet. If the ground connec- types of circuits. For example, high redundancy tion in the panel disconnects for any reason, the is one key feature that makes most of the elec- redundant ground near the transformer will trical distribution systems around the world safe provide the path for fault currents to open fuses and operate properly. or trip breakers. Preventing electrical shocks and electrical fires is the highest priority for ground Grounding for Safety circuits, but the redundancies built into many Isolated secondaries of step-down power distribu- electrical grounding systems occasionally limit tion transformers are generally grounded near certain kinds of connections for input to data the transformer and within the first switching acquisition systems. 1 Measurement Computing • 10 Commerce Way • Norton, MA 02766 • (508) 946-5100 • [email protected] • mccdaq.com Common Grounds Interfering Ground loop VCC VS VSS VDD Sensor R + 30 mA L Digital Analog – + circuits circuits ADC + 150 mV + Power ES V supply Digital Analog out Vin = 2.65V A – ground ground Vout = 2.50V Preferred common return 150 mV Default ground – + – 30 mA RL 500 ft. Earth Enclosure ground ground Fig. 10.03. The 150 mV dropped across RL in the bottom ground return line arises from the 30 mA of current flowing Fig. 10.02. Significant current fed to multiple circuits should in 5.2 W of lead wire resistance. The voltage adds to the have individual return paths to a common ground or negative sensor’s 2.50V signal to yield 2.65V at the input to the terminal. This reduces the risk of voltage drops developing over signal-conditioning amplifier and produces a 6.6% error. long ground runs or lead wires that could become input (error) signals to other circuits. Figure 10.03 few milliseconds and is usually not a safety hazard. But the problem can be much more serious if lightning strikes Figure 10.02 a safety ground structure and thousands of amperes flow Grounding for Robust Instrumentation through the ground system. Potential differences across Several internal, common busses in a data control instru- even a fraction of an ohm can easily exceed 1,000 VAC ment are arranged to regulate current flows and terminate and damage equipment and endanger lives. all paths at one common point. This approach ensures that the current flowing in any path will not force a Symptoms of Ground Loops voltage drop in a return path for another circuit and Sometimes, a measurement error is mistakenly attrib- appear as an (erroneous) input signal. (See Figure 10.02.) uted to a ground loop problem, especially where a Usually, this one common point connects through low ground is not strictly involved. The phenomenon impedances to the safety ground connection on the relates to two types of situations; shared current flow instrument’s AC power cord. This connection prevents in a circuit path, which produces unintended volt- the internal system from floating at an AC potential ages, and inadvertent circuits that interfere with the between earth ground and the input AC supply potential. proper operation of intended circuits. GROUND LOOPS How Ground Loops are Created Measuring instruments that contain an earth ground as A ground loop problem can be illustrated by the described above usually generate a ground loop. A ground following example. An integrated sensor with internal loop can become a serious problem even when the ground signal conditioning contains three wires; a positive voltage on the measured point equals the ground voltage power supply lead, a signal output lead, and a negative entering the instrument through the line cord. A voltage lead that serves as both the power return and signal that develops between the two grounds can be either an common. (See Figure 10.03.) The sensor’s internal AC or a DC voltage of any value and frequency, and as the circuitry draws about 30 mA and the output signal voltage and frequency increase, the effects of the ground ranges from 0 to 5 VDC. loop become more troublesome. The sensor is stimulated and a digital voltmeter reads the Dangerous and Destructive Ground Loops correct output of 2.50 VDC on the test bench. But when A transient current can generate a substantial voltage on the three leads are extended by 500 feet with 20 AWG grounded conductors. During an electrical fault when an wire (10.4 W/1,000 ft. at 20˚C), the common lead wire energized conductor contacts a safety ground, for example, carrying the 30 mA of power supply current drops about a fraction of the supply voltage can end up on the safety 150 mV. This lead resistance voltage drop adds to the ground before the fuse or circuit breaker supplying the sensors output voltage and delivers 2.65 VDC to the fault opens and removes the voltage. This happens in a digital voltmeter. The error amounts to about 6.6% and 2 Measurement Computing • 10 Commerce Way • Norton, MA 02766 • (508) 946-5100 • [email protected] • mccdaq.com Bypassed Ground Loop Single-ended Measurement: Unprotected Wires Sensor 5.00E-03 150 mV 30 mA 4.00E-03 – + 3.00E-03 + 2.00E-03 E 1.00E-03 Vout = Vin = S 2.50V 2.50V A – olts 0.00E+00 V -1.00E-03 -2.00E-03 RL + – -3.00E-03 -4.00E-03 150 mV 30 mA -5.00E-03 500 ft. 0 0.05 0.1 0.15 0.2 0.25 Time [seconds] Fig. 10.04. A separate wire run from the sensor ground (or common terminal) bypasses the power supply ground Fig. 10.05. Radiated noise spikes are easily picked up on non- wire voltage drop. The true output signal of the sensor twisted, non-parallel, unshielded lead wires connected to the (Vout) reaches the amplifier input terminals because the single-ended amplifier input terminals, even when the inputs input draws negligible current. are shorted together. what’s worse, it varies widely with the temperatureFigure of the10.05 supply. Differential input connections used with the wire. The specific application determines whether the analog common, which is referenced to the power supply Figure 10.04 error can be tolerated or not. return terminal, eliminates the effect of the ground loops inherent in this multiple-sensor arrangement. When the current drawn by the sensor circuit is not a steady state value, that is, it consists of an ambient level CROSSTALK IN DATA ACQUISITION SYSTEMS combined with a dynamic component, the error intro- Another type of ground-loop error is crosstalk between duced will be time varying. It might be a relatively high channels. This may be defined as an interaction between frequency, which acts as noise in the measured output, readings on two or more channels, which may be static or or it may be in perfect synch with the physical phenom- dynamic. When multiple channels are used and ground enon being sensed. It then affects the magnitude of the loops exist, the simplified errors described previously time-varying output signal. Both types of errors often most likely will be compounded by contributions from appear in data acquisition systems. other channels. The crosstalk may or may not be obvious.
Recommended publications
  • Suburban Noise Control with Plant Materials and Solid Barriers
    Suburban Noise Control with Plant Materials and Solid Barriers by DAVID I. COOK and DAVID F. Van HAVERBEKE, respectively professor of engineering mechanics, University of Nebraska, Lin- coln; and silviculturist, USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colo. ABSTRACT.-Studies were conducted in suburban settings with specially designed noise screens consisting of combinations of plant inaterials and solid barriers. The amount of reduction in sound level due to the presence of the plant materials and barriers is re- ported. Observations and conclusions for the measured phenomenae are offered, as well as tentative recommendations for the use of plant materials and solid barriers as noise screens. YOUR$50,000 HOME IN THE SUB- relocated truck routes, and improved URBS may be the object of an in- engine muffling can be helpful. An al- vasion more insidious than termites, and ternative solution is to create some sort fully as damaging. The culprit is noise, of barrier between the noise source and especially traffic noise; and although it the property to be protected. In the will not structurally damage your house, Twin Cities, for instance, wooden walls it will cause value depreciation and dis- up to 16 feet tall have been built along comfort for you. The recent expansion Interstate Highways 35 and 94. Al- of our national highway systems, and though not esthetically pleasing, they the upgrading of arterial streets within have effectively reduced traffic noise, the city, have caused widespread traffic- and the response from property owners noise problems at residential properties. has been generally favorable.
    [Show full text]
  • Realisation of the First Sub Shot Noise Wide Field Microscope
    Realisation of the first sub shot noise wide field microscope Nigam Samantaray1,2, Ivano Ruo-Berchera1, Alice Meda1, , Marco Genovese1,3 1 INRIM, Strada delle Cacce 91, I-10135 Torino, ∗Italy 2 Politecnico di Torino, Corso Duca degli Abruzzi, 24 - I-10129 Torino, Italy and 3 INFN, Via P. Giuria 1, I-10125 Torino, Italy ∗ ∗ Correspondence: Alice Meda, Email: [email protected], Tel: +390113919245 In the last years several proof of principle experiments have demonstrated the advantages of quantum technologies respect to classical schemes. The present challenge is to overpass the limits of proof of principle demonstrations to approach real applications. This letter presents such an achievement in the field of quantum enhanced imaging. In particular, we describe the realization of a sub-shot noise wide field microscope based on spatially multi-mode non-classical photon number correlations in twin beams. The microscope produces real time images of 8000 pixels at full resolution, for (500µm)2 field-of-view, with noise reduced to the 80% of the shot noise level (for each pixel), suitable for absorption imaging of complex structures. By fast post-elaboration, specifically applying a quantum enhanced median filter, the noise can be further reduced (less than 30% of the shot noise level) by setting a trade-off with the resolution, demonstrating the best sensitivity per incident photon ever achieved in absorption microscopy. Keywords: imaging, sub shot noise, microscopy, parametric down conversion 1 INTRODUCTION Sensitivity in standard optical imaging and sensing, the ones exploiting classical illuminating fields, is fundamentally lower bounded by the shot noise, the inverse square root of the number of photons used.
    [Show full text]
  • Noise Reduction Technologies for Turbofan Engines
    NASA/TM—2007-214495 Noise Reduction Technologies for Turbofan Engines Dennis L. Huff Glenn Research Center, Cleveland, Ohio September 2007 NASA STI Program . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical NASA Scientific and Technical Information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or cosponsored by NASA. this important role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program operates under the auspices technical, or historical information from of the Agency Chief Information Officer. It collects, NASA programs, projects, and missions, often organizes, provides for archiving, and disseminates concerned with subjects having substantial NASA’s STI. The NASA STI program provides access public interest. to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, • TECHNICAL TRANSLATION. English- thus providing one of the largest collections of language translations of foreign scientific and aeronautical and space science STI in the world. technical material pertinent to NASA’s mission. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which Specialized services also include creating custom includes the following report types: thesauri, building customized databases, organizing and publishing research results. • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis. Includes compilations of significant • Access the NASA STI program home page at scientific and technical data and information http://www.sti.nasa.gov deemed to be of continuing reference value.
    [Show full text]
  • Journey to a Quiet Night
    QUIET NIGHT TOOLKIT Journey to a Quiet Night Strategies to Reduce Hospital Noise and Promote Healing Patient responses to the HCAHPS survey of experience consistently identify noise at night as a dissatisfier in their hospital stay. Only 51% of patients surveyed following discharge from a California hospital report that their hospital room was always quiet at night, compared to 62% of patients nationally. Noise at night is our greatest challenge to create a healing environment of care. Hospitals that have successfully improved this dimension of care have used a few common strategies: informed staff behavior modification, mechanical noise mitigation, environmental noise mitigation, and real time data to drive changes. Drivers for Improvement in Hospital Noise • Educate staff about effects of noise on patient healing Informed Behavior • Engage staff in remediation plan development Modifi cation • Monitor noise in real time HCAHPS Score for “Always Quiet at Night” • “Quiet kits” for patients Mechanical above national average of • Equipment repair Mitigation • Noise absorbing panels or curtains in high traffi c areas AIM • Establish “quiet hours” Environmental 62% • Visual cues, such as signs and dimmed lights at night in patient care areas Mitigation • Utilize white noise options Real Time • Develop system of real time alerts based on patient/family input/feedback Data Learning • Real time reporting mechanism with feedback loop Informed behavior Modifi cation As health care providers, it is imperative that we understand and help to provide our patients with an environment that is optimized for healing. Staff members must be educated about the effects that noise from talking, equipment and other activities has on patients’ healing in the hospital.
    [Show full text]
  • Designing Linear Amplifiers Using the IL300 Optocoupler Application Note
    Application Note 50 Vishay Semiconductors Designing Linear Amplifiers Using the IL300 Optocoupler INTRODUCTION linearizes the LED’s output flux and eliminates the LED’s This application note presents isolation amplifier circuit time and temperature. The galvanic isolation between the designs useful in industrial, instrumentation, medical, and input and the output is provided by a second PIN photodiode communication systems. It covers the IL300’s coupling (pins 5, 6) located on the output side of the coupler. The specifications, and circuit topologies for photovoltaic and output current, IP2, from this photodiode accurately tracks the photoconductive amplifier design. Specific designs include photocurrent generated by the servo photodiode. unipolar and bipolar responding amplifiers. Both single Figure 1 shows the package footprint and electrical ended and differential amplifier configurations are discussed. schematic of the IL300. The following sections discuss the Also included is a brief tutorial on the operation of key operating characteristics of the IL300. The IL300 photodetectors and their characteristics. performance characteristics are specified with the Galvanic isolation is desirable and often essential in many photodiodes operating in the photoconductive mode. measurement systems. Applications requiring galvanic isolation include industrial sensors, medical transducers, and IL300 mains powered switchmode power supplies. Operator safety 1 8 and signal quality are insured with isolated interconnections. These isolated interconnections commonly use isolation 2 K2 7 amplifiers. K1 Industrial sensors include thermocouples, strain gauges, and pressure transducers. They provide monitoring signals to a 3 6 process control system. Their low level DC and AC signal must be accurately measured in the presence of high 4 5 common-mode noise.
    [Show full text]
  • Effect of Noise Type and Signal-To-Noise Ratio on the Effectiveness of Noise Reduction Algorithm in Hearing Aids: an Acoustical Perspective
    Global Journal of Otolaryngology ISSN 2474-7556 Research Article Glob J Otolaryngol - Volume 5 Issue 2 March 2017 Copyright © All rights are reserved by Sharath Kumar KS DOI: 10.19080/GJO.2017.05.555658 Effect of Noise Type and Signal-to-Noise Ratio on the Effectiveness of Noise Reduction Algorithm in Hearing Aids: An Acoustical Perspective Sharath Kumar KS* and Manjula P Department of Audiology, All India Institute of Speech and Hearing (AIISH), University of Mysuru, India Submission: March 05, 2016; Published: March 16, 2017 *Corresponding author: Sharath Kumar KS, Department of Audiology (New JC block), Manasagangotri, AIISH, Mysuru - 570 006, Karnataka, India, Tel: ; Email: Second author: Manjula P, Professor of Audiology, Department of Audiology, Manasagangotri, AIISH, Mysuru - 570 006 India, Karnataka, Tel: ; Email: Abstract Purpose: acoustical measures. The study evaluated factors that influence the effectiveness of noise reduction (NR) algorithm in hearing aids, through Methods: Factorial design was employed. Study sample: The output from hearing aid, with and without NR at three signal-to-noise Qualityratios (SNR) (PESQ). with five types of noise, was recorded. The effect of noise reduction was studied through objective measures such as Waveform Amplitude Distribution Analysis - Signal-to-Noise Ratio (WADA-SNR), Envelope Difference Index (EDI), and Perceptual Evaluation of Speech Results: The results revealed that when NR was enabled, it was effective in reducing the noise. However, when speech was presented in the presenceConclusion: of noise, the NR was effective in enhancing certain acoustic parameters of speech; like signal-to-noise ratio and envelope. changes in the output of the hearing aid with and without NR processing.
    [Show full text]
  • Noise Reduction Using Active Vibration Control Methods in CAD/CAM Dental Milling Machines
    applied sciences Article Noise Reduction Using Active Vibration Control Methods in CAD/CAM Dental Milling Machines Eun-Sung Song 1 , Young-Jun Lim 2,* , Bongju Kim 1 and Jeffery Sungjae Mun 3 1 Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea; [email protected] (E.-S.S.); [email protected] (B.K.) 2 Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea 3 Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA; [email protected] * Correspondence: [email protected]; Tel.: +82-02-2072-2040 Received: 28 February 2019; Accepted: 8 April 2019; Published: 12 April 2019 Abstract: Used in close proximity to dental practitioners, dental tools and devices, such as hand pieces, have been a possible risk factor to hearing loss due to the noises they produce. Recently, additional technologies such as CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) milling machines have been used in the dental environment and have emerged as a new contributing noise source. This has created an issue in fostering a pleasant hospital environment. Currently, because of issues with installing and manufacturing noise-reducing products, the technology is impractical and insufficient relative to its costly nature. In this experiment, in order to create a safe working environment, we hoped to analyze the noise produced and determine a practical method to attenuate the noises coming from CAD/CAM dental milling machines. In this research, the cause for a noise and the noise characteristics were analyzed by observing and measuring the sound from a milling machine and the possibility of reducing noise in an experimental setting was examined using a noise recorded from a real milling machine.
    [Show full text]
  • Considerations for Instrument Grounding Many People Have Heard of the Term "Grounding", but Few Fully Understand Its Meaning and Importance
    TECHNICAL OVERVIEW Considerations for Instrument Grounding Many people have heard of the term "grounding", but few fully understand its meaning and importance. Sometimes, even experienced electricians do not treat grounding as a serious issue. The impact of an incorrect or absent grounding ranges from noise interference. resonance or humming during the use of electrical equipment to the worst case where electricity leakage through the chassis causes personal injury or damage to instrument components. Grounding, therefore, is a very practical issue that should be dealt with properly. For those who operate electrical equipment frequently, a complete understanding of grounding theories and applications is necessary in order to become a best-in-class technician. In the eighteenth century, Benjamin Franklin performed the famous kite experiment to observe how lightning in the sky was conducted to the earth. This experiment led to the invention of lightning rods to avoid lightning strikes. From then on, people began to realize that the vast ground under our feet is a huge electrical conductor. It may not be the best conductor, but it is certainly a good one. It is so enormous in size that it can sustain a tremendous amount of current. That is why the voltage level of the ground is set to be zero. Safety regulations require that all metal parts which do not carry electricity should be kept at zero or the earth voltage level. There are several reasons for grounding. Some are for safety purposes, and some are for maintaining circuit stability. The following are some examples: – Power system grounding: As you can see in Figure 1.
    [Show full text]
  • Total Variation Denoising for Optical Coherence Tomography
    Total Variation Denoising for Optical Coherence Tomography Michael Shamouilian, Ivan Selesnick Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, New York, USA fmike.sha, [email protected] Abstract—This paper introduces a new method of combining total variation denoising (TVD) and median filtering to reduce noise in optical coherence tomography (OCT) image volumes. Both noise from image acquisition and digital processing severely degrade the quality of the OCT volumes. The OCT volume consists of the anatomical structures of interest and speckle noise. For denoising purposes we model speckle noise as a combination of additive white Gaussian noise (AWGN) and sparse salt and pepper noise. The proposed method recovers the anatomical structures of interest by using a Median filter to remove the sparse salt and pepper noise and by using TVD to remove the AWGN while preserving the edges in the image. The proposed method reduces noise without much loss in structural detail. When compared to other leading methods, our method produces similar results significantly faster. Index Terms—Total Variation Denoising, Median Filtering, Optical Coherence Tomography I. INTRODUCTION Fig. 1. 2D slices of a sample retinal OCT volume. Optical Coherence Tomography (OCT), a non-invasive in vivo imaging technique, provides images of internal tissue mi- crostructures of the eye [1]. OCT imaging works by directing light beams at a target tissue and then capturing and processing the backscattered light [2]. To create a 3D volume image of the eye, the OCT device scans the eye laterally [2]. However, current OCT imaging techniques inherently introduce speckle noise [3].
    [Show full text]
  • Galvanic Isolation
    Galvanic Isolation Stephen Mazich What is it? ● The prevention of current flow between sections of electrical systems ● Energy and/or information can still be exchanged ● Methods to exchange information include: ○ capacitance ○ induction ○ light ○ electromagnetic waves Image courtesy of Analog.com : http://www.analog.com/library/analogdialogue/archives/43-11/imgC_bb.gif Examples ● Transformer ○ Utilizes induction ● Opto-isolator ○ Utilizes light ● Capacitor(class Y) ○ Utilizes capacitance ● Hall effect ○ Utilizes electromagnetic waves Image courtesy of AYA Instruments : http://www.ayainstruments.com/images/theory001.jpg How does it apply to the project? The Formula Hybrid rules ● EV 1.2.4 The tractive and GLV system must be galvanically isolated from one another. ● EV 3.6.5 Any GLV connection to the AMS must be galvanically isolated from the TSV. ● EV 4.5.4 All controls, indicators, and data acquisition connections or similar must be galvanically isolated from the tractive system. ● EV 8.2.11 All chargers must be UL (Underwriters Laboratories) listed. Any waivers of this requirement require approval in advance, based on documentation of the safe design and construction of the system, including galvanic isolation between the input and output of the charger. Picture courtesy of the Formula SAE Rulebook : http://students.sae.org/cds/formulaseries/rules/2015-16_fsae_rules.pdf How are we using it? GLV ● DC-DC Converter ● Relay TSV ● Opto-isolator ● Isolated CAN transceiver ● Relay Dyno ● Opto-isolator ● Isolated CAN transceiver Images courtesy
    [Show full text]
  • How to Use a Multimeter and Build a Simple Circuit
    How to use a Multimeter and Build a Simple Circuit Components: 3 assorted resistors, 4 assorted batteries, 3 assorted LEDs, 1 SPST toggle switch, 1 DPDT knife switch, fuse, motor Equipment and tools: Safety Glasses, 4AA battery pack, alligator clips, multimeter All exercises require safety glasses over your eyes, all the time! A multimeter is an electronic measuring instrument that combines several measurement functions in one unit. A typical multimeter includes basic features such as the ability to measure voltage, current, and resistance. 1. Use a multimeter to test the voltage on an assortment of batteries. [Expected voltage is the voltage stamped on the battery.] Set multimeter to The black lead goes in the COM port, the red lead is in the V port. Battery Size Expected Voltage Measured Voltage Good or Bad? C size 1.5 V 1.3 V Bad 2. Use your multimeter to measure the voltage of your 4-AA battery pack. What is the voltage: _____________. These batteries are in series and their voltage is cumulative. 3. Use a multimeter to measure the resistance of the 3 resistors. After measuring the value, verify that the resistor is within +- tolerance. Set multimeter to The black lead goes in the COM port, the red lead is in the V port. Expected Measured Resistor Band Colors Resistance Percentage OK? Resistance (read code) orange, orange, brown 330Ω 328Ω 1 MATE Center 2016 Funding by the National Science Foundation. www.marinetech.org 4. Create a circuit to light up your LED. Using a 4-AA battery pack, alligator clips, your red LED and resistors, create a circuit like the one shown below.
    [Show full text]
  • Intermediate Answer Key Chapter 19: Electrical Circuits
    CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits Review Questions 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the total resistance of the circuit? b. What is the current in the circuit? c. What is the voltage drop across one of the resistors? 2. A 5.00Ω, a 10.0Ω, and a 15.0Ω resistor are connected in a series across a 90.0 V battery. a. What is the equivalent resistance of the circuit? b. What is the current in the circuit? c. What is the voltage drop across the 5.00Ω resistor? 3. A 5.00Ω and a 10.0Ω resistor are connected in series across an unknown voltage. The total current in the circuit is 3.00 A. a. What is the equivalent resistance of the circuit? b. What is the current through the 5.00Ω resistor? c. What is the total voltage drop for the entire circuit? Answers 1. a. Using 푅푇 = 푅1 + 푅2 + 푅3 ∶ 20Ω + 20Ω + 20Ω = 60Ω ∶ 퐑퐓 = ퟔퟎ훀 푉 120푉 b. Using 퐼 = ∶ = ퟐ푨 푅 60Ω c. Using 푉 = 퐼푅 ∶ (2퐴)(20Ω) = ퟒퟎ푽 (this is the same for each resistor) 2. a. Using 푅푇 = 푅1 + 푅2 + 푅3 ∶ 5Ω + 10Ω + 15Ω = 30Ω ∶ 퐑퐓 = ퟑퟎ훀 푉 90푉 b. Using 퐼 = ∶ = ퟑ푨 푅 30Ω c. Using 푉 = 퐼푅 ∶ (3퐴)(5Ω) = ퟏퟓ푽 3. a. Using 푅푇 = 푅1 + 푅2 ∶ 5Ω + 10Ω = 15Ω ∶ 퐑퐓 = ퟏퟓ훀 1 푉 45푉 b. Using 퐼 = ∶ = ퟑ푨 푅 15Ω c. Using 푉 = 퐼푅 ∶ (3퐴)(15Ω) = ퟒퟓ푽 19.2 Parallel Circuits Review Questions 1.
    [Show full text]