THE POTENTIAL ABILITY of Stethorus Bifidus (Kapur) to REGULATE POPULATIONS of Tetranychus Lintearius (Dufour)

Total Page:16

File Type:pdf, Size:1020Kb

THE POTENTIAL ABILITY of Stethorus Bifidus (Kapur) to REGULATE POPULATIONS of Tetranychus Lintearius (Dufour) Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the pennission of the Author. THE POTENTIAL ABILITY OF Stethorus bifidus (Kapur) TO REGULATE POPULATIONS OF Tetranychus lintearius (Dufour) A Thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology at Massey University. PAUL GORDON PETERSON 1993 PLATE 1: Gorse as a problem in forestry KOPURIKI NEAR TE PUKE Silviculture practices are restricted or prevented by gorse. ii ABSTRACT Tetranychus /intearius Dufour (Acari; Tetranychidae) was released in New Zealand, in 1989, to assist in the regulation of gorse ( Ulex europaeus). The present study was initiated to determine why colonies of GSM are consistently failing to establish above parallel 39° S and the possibility that Stethorus bifidus may be regulating populations of T.lintearius (GSM). Predation by S.bifidus was investigated by examining both numerical and functional responses to prey density. - Development of S.bifidus is described by a linear relationship with temperature between 8.5°C and 27.5°C (numerical response). Oviposition and temperature are linearly related and independent of GSM density. Measurements of temperature under GSM webbing showed an elevation of 1- 20 C above ambient. - The feeding rate of S.bifidus increased in a non-linear fashion between 6.5°C and 32.5°C (functional response). - Handling time decreased with increasing prey density demonstrating that S.bifidus is an effective predator at high mite densities. This investigation suggests that the role of S.bifidus in regulating GSM is more important in northern regions of New Zealand. iii ACKNOWLEDGEMENTS I would firstly like to thank my supervisor Professor B.P.Springett for his guidance and support during the planning, execution and writing up of this thesis. In particular I am grateful to Prof. Springett for time spent fine-tuning written work for final presentation. P.McGregor, Landcare, C.R.I., Palmerston North offered constructive criticism and undivided attention throughout the year. Help with statistical analysis was extensively provided by P.McGregor whose endless patience and support was invaluable. Mite identification was carried out by G.Ramsay, and help in identifying Stethorus species was provided by J.Charles, both of who work at the Mt. Albert Research Centre. A.Hill who engineered the topic helped to initiate early work with suggestions and encouragement. This included hints for experimental set up and mite rearing in particular. I would also like to thank C.Winks for taking time to show me a GSM release site at Albany. I am grateful to Jens Jorgensen for the construction of feeding cell pads and help with humidity chamber construction. Finally I would like to thank my parents for their moral support and Miranda for her encouragement and patience. TABLE OF CONTENTS PAGE Abstract. ................................................................................................ ii Acknowledgements ............................................................................... iii Table of Contents ................................................................................. iv List of Plates ......................................................................................... vi List of Tables ........................................................................................ viii List of Figures ....................................................................................... ix Chapter one - Introduction .................................................................... 1 Chapter two - Biology and Life History of Tetranychus lintearius ... 13 Chapter three - Biology and Life History of Stethorus bifidus ......... 26 Chapter four - The Predatory Ability of Stethorus bifidus................. 45 Part one: The Reproductive Response ............................................ 45 (A component of the numerical response) Part two: Components of the Functional Response General Introduction ...................................................... 73 Section one: Feeding rate of Stethorus bifidus......... 74 Section two: Handling time ........................................... 84 Chapter five - Discussion ....................................................................... 93 V Chapter six - Summary .......................................................................... 109 Appendices ............................................................................................ 111 References/Bibliography ...................................................................... 118 vi LIST OF PLATES 1: Gorse as a problem in forestry .............................................................. I 2: Tetranychus lintearius the biocontrol agent.. ...................................... 4 a- mid range b- close range c- electron micrograph 3: GSM feeding damage to gorse ............................................................ 15 4: Phytoseiulus persimilis a predatory mite that feeds on GSM ........... 24 5: GSM web interfering with predator mobility? ..................................... 32 a- a barrier to beetle larvae b- however rarely restricting adults 6: The coccinellid Stethorus bifidus.......................................................... 41 7: Beetle egg laid amongst GSM eggs ...................................................... 49 8: Developmental stages of Stethorus bifidus.......................................... 50 a- egg with eye spots b- 1st instar c- 2nd d- 3rd e- 4th f- pupa 9: Probe used to measure temperature under GSM web ......................... 56 1O: 'Cell pad' used for feeding tests ........................................................... 76 vii 11: a- Stethorus bifidus feeding on an adult GSM ............................... 86 b- Mites attacked by beetles of differing hunger states ................ 86 viii LIST OF TABLES 1: A comparison of development rates of S.bifidus in cells and on shoots ............................................................................................... 55 2: Threshold temperatures for development of Stethorus bifidus.......... 57 3: GSM establishment success in relation to temperature ...................... 65 4: b- Maximum feeding rate of Stethorus blfldus in relation to temperature ....................................................................................... 79 c- Humidity readings ........................................................................ 79 5: Indices of extraction ................................................................................. 88 6: Exogenous population processes responsible for population regulation ........................................................................................... 95 7: Comparative development rates of a- Tetranychus llntearius in relation to temperature .................... 100 b- Stethorus bifidus in relation to temperature ............................. 100 ix LIST OF FIGURES 1: Development rate of Stethorus bifidus In relation to temperature a- preimaginal stages .................................................................... 58 b- total development. ..................................................................... 60 2: Oviposition of Stethorus bifidus in relation to a- GSM density between 11.5°C and 32.5°C ................................ 62 b- temperature ................................................................................. 64 3: GSM establishment success in relation to temperature .................... 66 4: a- Effect of GSM webbing on temperature ................................... 68 b- temperature under GSM web in relation to temperature on gorse................................................................................................. 69 5: Consumption by S.bifidus in relation to a- GSM density................................................................................. 80 b- temperature .................................................................................. 82 6: Stethorus bifidus prey density determining handling time ................ 89 7: Major body divisions of the Acari. ....................................................... 91 8: Factors determining the predatory potential of Stethorus bifidus... 98 9: Comparison of development rates of Stethorus bifidus and Tetranychus lintearius in relation to temperature ....................... 101 CHAPTER ONE: INTRODUCTION Part one: Regulation of gorse in New Zealand - The plant, the biocontrol agents, the policies/procedures and the complications. Gorse - The options for regulation of a noxious plant: Gorse ( U!ex europaeus L.) is a fast growing woody legume capable of establishing rapidly from seeds or stumps. It thrives particularly in low fertility soils where the competitive ability of other 'more favoured' plants is reduced. Although gorse is found throughout Europe, it is only considered a major weed of agriculture and forestry in North America, South Australia, Tasmania, New Zealand and at high altitudes in Hawaii. A warm, moist climate free of temperature extremes and exposure to cold winds appears to suit gorse. Control is difficult and expensive. In 1977, chemical control of gorse in New Zealand cost approximately $7 million and this did not include the cost of lost production (Maccarter & Gaynor 1980). According to Miller (1970; cited in Hill & Gourlay 1990),
Recommended publications
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • UTAH PESTS Staff
    UTAH PESTS News Utah Plant Pest Diagnostic Laboratory and USU Extension Vol. IV, Winter 2010 Battling Bed Bugs in Utah “Sleep tight, don’t let the bed bugs bite.” All people know this phrase, and the harsh reality of its meaning is becom- What’s Inside ing known once again. Over the past Turfgrass Insect Pests of decade, reports of bed bugs (Cimicidae: Utah Cimex lectularius) throughout North America and abroad have been on the Encouraging Native Pol- linators in Your Yard and rise. Accordingly, bed bug submissions Garden to the UPPDL have also been increasing. This article will briefly explain the recent In the Spotlight: Are resurgence of bed bugs, and consider- Native Plants Resistant to ations for selecting a pest control com- Pests? bugwood.org pany to eradicate bed bug problems. On the Lookout for Invasive Tree Fruit and HISTORY OF BED BUGS Landscape Pests In the 1920s and 1930s, Americans were News, Publications, Web plagued by bed bugs. Some reports sites, Calendar stated that one out of every three homes was infested. People could pick News Highlights up unwanted bugs on buses, taxis, in the NEW UTAH PESTS movie theater, and just about anywhere. FACT SHEETS But in the early 1950s, bed bugs disap- bugwood.org The following can be peared from the developed world’s radar, found on our Web site: thanks to new insecticides like DDT, and Raspberry Horntail improved living standards. DDT applica- Community tions in homes, hotels, transportation Grasshopper Control vehicles, and health care facilities would kill bed bugs for several months to over a year.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Characterization of Plant-Spider Mite Interactions and Establishment of Tools for Spider Mite Functional Genetic Studies
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 10-12-2017 10:00 AM Characterization of plant-spider mite interactions and establishment of tools for spider mite functional genetic studies Nicolas Bensoussan The University of Western Ontario Supervisor Vojislava Grbić The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Nicolas Bensoussan 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Agronomy and Crop Sciences Commons, Biotechnology Commons, Cell Biology Commons, Entomology Commons, Genetics Commons, and the Molecular Genetics Commons Recommended Citation Bensoussan, Nicolas, "Characterization of plant-spider mite interactions and establishment of tools for spider mite functional genetic studies" (2017). Electronic Thesis and Dissertation Repository. 5015. https://ir.lib.uwo.ca/etd/5015 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores feeding on cell contents of over 1100 plant species including more than 150 crops. However, despite its important pest status and a growing understanding of the molecular basis of its interactions with plant hosts, knowledge of the way mites interface with the plant while feeding and the plant damage directly inflicted by mites is lacking. Likewise, while the use of the reverse genetic tools in plants facilitated our understanding of the establishment of defense mechanisms against spider mite herbivory, such tools are lacking for spider mite, preventing the expansion of functional analysis to both sides of the interacting organisms.
    [Show full text]
  • Contrasting Ladybird Beetle Responses to Urban Environments Across Two US Regions
    sustainability Article Context Matters: Contrasting Ladybird Beetle Responses to Urban Environments across Two US Regions Monika Egerer 1,* ID , Kevin Li 2 and Theresa Wei Ying Ong 3,4 ID 1 Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 2 Department of Plant Sciences, University of Göttingen, Göttingen NI 37077, Germany; [email protected] 3 Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 4 Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08540, USA * Correspondence: [email protected]; Tel.: +1-734-775-8950 Received: 8 April 2018; Accepted: 30 May 2018; Published: 1 June 2018 Abstract: Urban agroecosystems offer an opportunity to investigate the diversity and distribution of organisms that are conserved in city landscapes. This information is not only important for conservation efforts, but also has important implications for sustainable agricultural practices. Associated biodiversity can provide ecosystem services like pollination and pest control, but because organisms may respond differently to the unique environmental filters of specific urban landscapes, it is valuable to compare regions that have different abiotic conditions and urbanization histories. In this study, we compared the abundance and diversity of ladybird beetles within urban gardens in California and Michigan, USA. We asked what species are shared, and what species are unique to urban regions. Moreover, we asked how beetle diversity is influenced by the amount and rate of urbanization surrounding sampled urban gardens. We found that the abundance and diversity of beetles, particularly of unique species, respond in opposite directions to urbanization: ladybirds increased with urbanization in California, but decreased with urbanization in Michigan.
    [Show full text]
  • Non-Target Organism Risk Assessment of MIR604 Maize Expressing Mcry3a for Control of Corn Rootworm
    J. Appl. Entomol. 131(6), 391–399 (2007) doi: 10.1111/j.1439-0418.2007.01200.x Ó 2007 The Authors Journal compilation Ó 2007 Blackwell Verlag, Berlin Non-target organism risk assessment of MIR604 maize expressing mCry3A for control of corn rootworm A. Raybould1, D. Stacey1, D. Vlachos2, G. Graser2,X.Li2 and R. Joseph2 1Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, UK; 2Syngenta Biotechnology, Inc., Research Triangle Park, NC, USA Ms. received: February 19, 2007; accepted: April 6, 2007 Abstract: Event MIR604 maize expresses a modified Cry3A protein (mCry3A), for control of corn rootworm. As part of the environmental safety assessment of MIR604 maize, risks to non-target organisms of mCry3A were assessed. The potential exposure of non-target organisms to mCry3A following cultivation of MIR604 maize was determined, and the hypothesis that such exposure is not harmful was tested. The hypothesis was tested rigorously by making worst-case or highly conservative assumptions about exposure, along with laboratory testing for hazards using species taxonomically related to the target pest and species expected to have high exposure to mCry3A, or both. Further rigour was introduced by study designs incorporating long exposures and measurements of sensitive endpoints. No adverse effects were observed in any study, and in most cases exposure to mCry3A in the study was higher than the worst-case expected exposure. In all cases, exposure in the study was higher than realistic, but still conservative, estimates of exposure. These results indicate minimal risk of MIR604 maize to non-target organisms. Key words: environmental safety, exposure, hazard, hypothesis testing, transgenic plants 1 Introduction Control of corn rootworms requires insecticides or crop rotation, and both methods can occasionally fail Corn rootworms are serious pests of maize in the USA, to prevent yield loss because of adaptation of the pest where they cause estimated annual losses of 1 billion (Rice 2003).
    [Show full text]
  • Indirect Effects on Arthropods Inhabiting Papaya Foliage
    Oecologia (2003) 135:442-450 DOI 10. 1007/s00442-003-1212-9 Valerie Fournier * Jay A. Rosenheim a Jacques Brodeur *Lee 0. Laney *Marshall W. Johnson Herbivorousmites as ecological engineers: indirecteffects on arthropodsinhabiting papaya foliage Received: 28 October 2002 / Accepted: 4 February2003 / Published online: 11 March 2003 ? Springer-Verlag2003 Abstract We examined the potential of a leaf roller to Introduction indirectly influence a community of arthropods. Two mite species are the key herbivores on papaya leaves in Ecologists are increasingly appreciating the importance of Hawaii: a spider mite, Tetranychus cinnabarinus Boisdu- indirect interactions in structuring animal communities val, and an eriophyid mite, Calacarus flagelliseta, which (Strauss 1991; Wootton 1994; Polis and Winemiller 1996; induces upward curling of the leaf margin at the end of Janssen et al. 1998). For arthropod communities in the summer when populations reach high densities. A particular, indirect interactions can be mediated by survey and three manipulative field experiments demon- shelters created by one species and subsequently used strated that (1) leaf rolls induce a consistent shift in the by another species (Damman 1993). spatial distribution of spider mites and their predators, the Shelter building through leaf rolling, folding, or tying coccinellid Stethorus siphonulus Kapur, the predatory is a common behavior among several arthropod taxa, mites Phytoseiulus spp., and the tangle-web building including caterpillars (Lepidoptera), sawflies (Hymenop- spider Nesticodes rufipes Lucas; (2) the overall abun- tera: Pamphiliidae), weevils (Coleoptera: Attelabidae), dance of spiders increases on leaves with rolls; (3) the and herbivorous mites in the superfamily Eriophyoidea specialist predators Stethorus and Phytoseiulus inhabit the (Acari) (Frost 1959; Keifer et al.
    [Show full text]
  • Phylogeny of Ladybirds (Coleoptera: Coccinellidae): Are the Subfamilies Monophyletic?
    Molecular Phylogenetics and Evolution 54 (2010) 833–848 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of ladybirds (Coleoptera: Coccinellidae): Are the subfamilies monophyletic? A. Magro a,b,1, E. Lecompte b,c,*,1, F. Magné b,c, J.-L. Hemptinne a,b, B. Crouau-Roy b,c a Université de Toulouse, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), 2 route de Narbonne, F-31320 Castanet Tolosan, France b CNRS, EDB (Laboratoire Evolution et Diversité Biologique), F-31062 Toulouse, France c Université de Toulouse, UPS, EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France article info abstract Article history: The Coccinellidae (ladybirds) is a highly speciose family of the Coleoptera. Ladybirds are well known Received 20 April 2009 because of their use as biocontrol agents, and are the subject of many ecological studies. However, little Revised 15 October 2009 is known about phylogenetic relationships of the Coccinellidae, and a precise evolutionary framework is Accepted 16 October 2009 needed for the family. This paper provides the first phylogenetic reconstruction of the relationships Available online 10 November 2009 within the Coccinellidae based on analysis of five genes: the 18S and 28S rRNA nuclear genes and the mitochondrial 12S, 16S rRNA and cytochrome oxidase subunit I (COI) genes. The phylogenetic relation- Keywords: ships of 67 terminal taxa, representative of all the subfamilies of the Coccinellidae (61 species, 37 genera), Phylogeny and relevant outgroups, were reconstructed using multiple approaches, including Bayesian inference Coccinellidae Partitioned analyses with partitioning strategies. The recovered phylogenies are congruent and show that the Coccinellinae Evolution is monophyletic but the Coccidulinae, Epilachninae, Scymninae and Chilocorinae are paraphyletic.
    [Show full text]
  • Awc199913201.Pdf
    Twelfth Australian Weeds Conference PROGRESS ON THE REARING, RELEASE AND ESTABLISHMENT OF THE GORSE SPIDER MITE, TETRANYCHUS LINTEARIUS DUFOUR, FOR THE BIOLOGICAL CONTROL OF GORSE IN AUSTRALIA J.E. Ireson1, A. H. Gourlay2, R.M. Kwong3, R.J. Holloway1, and W.S. Chatterton1 1 Tasmanian Institute of Agricultural Research, 13 St John’s Avenue, New Town, Tas. 7008 2 Landcare Research New Zealand Ltd., Canterbury Agriculture and Science Centre, PO Box 69, Gerald St., Lincoln, New Zealand 3 Keith Turnbull Research Institute, PO Box 48, Frankston, Vic. 3199 Summary Gorse, Ulex europaeus, is a serious weed occur in the central and northern midlands on pastures in south-eastern Australia and was approved as a tar- grazed mainly by sheep. In these areas alone, losses get for biological control in July 1995. The gorse spi- in animal production are currently estimated at ca. $1 der mite, Tetranychus lintearius, is a native of Europe million per annum. Although gorse can be controlled that can severely damage gorse foliage and is now es- on arable and grazing land, the high cost of control of tablished in New Zealand. Host specificity tests con- up to $1,500 per ha. exceeds land values in some ar- firmed that T. lintearius was host specific to the genus eas. In Victoria, gorse is the sixteenth most widespread Ulex and 6 strains were introduced from New Zealand weed. It occupies an estimated total area of 948,000 into quarantine in Tasmania and Victoria during spring ha over which scattered infestations are found on 1998. Eggs produced were surface sterilised and en- 805,000 ha and medium to dense infestations on sured pathogen free before T.
    [Show full text]
  • Red Palm Mite)
    Crop Protection Compendium Datasheet report for Raoiella indica (red palm mite) Top of page Pictures Picture Title Caption Copyright Adult The red palm mite (Raoiella indica), an invasive species in the Caribbean, may threaten USDA- mite several important palms found in the southern USA. (Original magnified approx. 300x.) ARS Photo by Eric Erbe; Digital colourization by Chris Pooley. Colony Colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Colony Close-up of a colony of red palm mites (Raoiella indica) on coconut leaflet, from India. Bryony of Taylor mites Top of page Identity Preferred Scientific Name Raoiella indica Hirst (1924) Preferred Common Name red palm mite International Common Names English: coconut red mite; frond crimson mite; leaflet false spider mite; red date palm mite; scarlet mite EPPO code RAOIIN (Raoiella indica) Top of page Taxonomic Tree Domain: Eukaryota Kingdom: Metazoa Phylum: Arthropoda Subphylum: Chelicerata Class: Arachnida Subclass: Acari Superorder: Acariformes Suborder: Prostigmata Family: Tenuipalpidae Genus: Raoiella Species: Raoiella indica / Top of page Notes on Taxonomy and Nomenclature R. indica was first described in the district of Coimbatore (India) by Hirst in 1924 on coconut leaflets [Cocos nucifera]. A comprehensive taxonomic review of the genus and species was carried out by Mesa et al. (2009), which lists all suspected junior synonyms of R. indica, including Raoiella camur (Chaudhri and Akbar), Raoiella empedos (Chaudhri and Akbar), Raoiella obelias (Hasan and Akbar), Raoiella pandanae (Mohanasundaram), Raoiella phoenica (Meyer) and Raoiella rahii (Akbar and Chaudhri). The review also highlighted synonymy with Rarosiella cocosae found on coconut in the Philippines.
    [Show full text]
  • Tetranychus Lintearius Dufour, 1832, Is a Valid Species (Acar.) Notulae Ad Tetranychidas 11
    90 ENTOMOLOGISCHE BERICHTEN, DEEL 27, 1.V.1967 Tetranychus lintearius Dufour, 1832, is a valid species (Acar.) Notulae ad Tetranychidas 11 by G. L. VAN EYNDHOVEN Zoölogisch Museum, Amsterdam It has always been a problem whether or not Tetranychus lintearius Dufour, 1832, should be considered as a separate species. It is the type species of the genus Tetranychus Dufour, 1832, but nevertheless very insufficiently known. Owing to this fact the species has usually been synonymized with Tetranychus urticae C. L. Koch, 1836 ( = Tetranychus telarius (L., 1758) in the sense of Pritchard & Baker, 1955). Dufour described the mite in 1832 with the following characteristics: “Tetranychus lintearius, Tétranyque linger. Ovatus obtusus, ruber, pedibus dilutioribus ; dorso pedibusque pilis albidis longis distinctis. Hab. gregarius in arbustis quos telis vestit.” Two figures complete this Latin diagnosis. The additional description and the notes on the biology are written in French. Dufour found the specimens on the “ajonc”, the gorse (Ulex europaeus L.), at the environs of Saint Sever, Landes, France. Shrubs with a diameter of several feet were entirely enveloped by a large, milkwhite web. Although Dufour was aware of the existence of other spinning mites (Trom- hidium socium, telarium and tiliarium, p. 280), he had never seen them and so he thought his species to be entirely new. As he believed the legs to end in four little claws, he composed for his new genus the name Tetranychus, and as he was highly impressed by the heavy spinning, he introduced as species name the word linte¬ arius, meaning a merchant of linens or a linen-weaver.
    [Show full text]