PIERCE, Naomi Barcode of Life 2015 FINAL.Key
Total Page:16
File Type:pdf, Size:1020Kb
Ecological interactions Myrmecophiles of the ants of Vachellia (Acacia) drepanolobium Naomi E. Pierce Museum of Comparative Zoology Harvard University (2006) Molecular prospecting: Ants and symbiotic bacteria Alex Wild Bacteria from some ant groups are specialized and closely related Tetraponera associates are monophyletic Cephalotini associates are monophyletic C. Moreau Key: Jake Ant associates Russell Symbionts of plants Symbionts of invertebrates Ants with Rhizobiales have evolved independently At least 5 separate origins of Rhizobiales associations with herbivorous ants Key: Herbivore Predator Rhizobiales host Phylogeny from Moreau et al. 2006 . PNAS (2009) 106: 21236 Symbiotic gut bacteria are likely to have facilitated the evolution of herbivory in ants 7 Cephalotes Jon Sanders Coevolution of ants and their microbiota ... Characterizing gut bacteria for Cephalotes qPCR corroborates visual evidence 16S copies / ng DNA: ant guts Tetraponera penzigia 1E+07 1E+06 1E+05 1E+04 16S copies / ng DNA 1E+03 1E+02 0.1 1.0 10.0 100.0 extracted DNA concentration Other Guts Cephalotes Guts Polyrachis gasters Cephalotes rohweri 10µm 0.1mm 1mm 1m Host nuclei Bacteria 0 0 1 1 1 pallidoides Verrucomicrobiae clypeatus pusillus atratus persimilis Gammaproteobacteria maculatus Abundances persample eduarduli borgmeieri pellans grandinosus minutus Alphaproteobacteria simillimus spinosus cordatus aff. pallens umbraculatus Betaproteobacteria aff.angustus rohweri bohlsi peruviensis setulifur crenaticeps placidus scutulatus Other mompox Procryptocerus sp. 0.01 Legend: Dataset species_dots fdr_sig_nodes total_nodes Dataset per_species_heatmap 0 16 32 50 3366 6682 10000 Color ranges: c__Clostridia p__GN02 c__Opitutae k__Bacteria p__Bacteroidetes c__Flavobacteria c__Bacteroidia c__Bacilli c__Chloroplast c__Alphaproteobacteria p__Proteobacteria c__Gammaproteobacteria c__Epsilonproteobacteria c__Betaproteobacteria Many OTUs codiversify 204 117 33 26 65 92 350 63 71 136 75 121 60 262 189 67 34 27 113 695 170 57 10 35 896 66 138 361 0 426 275 725 209 208 156 45 174 197 78 391 64 515 74 166 286 738 28 14 119 332 183 817 39 47 13 1 20 888 131 Cephalotes 852 31 195 43 574 pOTU width p < 0.01 (tested) 158 37 468 46 2 487 11 6 99 69 89 19 (83) 23 72 899 44 699 289 272 32 148 115 93 19 (80) 529 186 400 790 191 527 16 706 7 12 36 95 15 (123) 409 836 30 29 368 22 48 405 165 671 900 9 21 97 9 (166) 772 766 880 492 965 162 644 566 3 153 125 90 374 829 15 54 709 76 137 489 323 Molecular Ecology (2014) 23: 1268 18 809 288 8 815 520 394 89 993 5 25 83 58 59 88 122 17 967 157 Pollination biology: the evolution of orchid bees Phylogeny of Euglossini (stingless bees) Fossils used to “calibrate” age of tree Santiago Ramírez Penalized likelihood rate smoothing =10 CO1 + Ef1-alpha (F2) 75 50 25 0 My Mechanical floral isolation in euglossine-pollinated orchids 2 1 5 7 8 6 4 1 – Head 7 2 – Antennae 3 – Leg 1 4 – Ventral thorax 5 – Scutum 3 6 – Scutellum 7 – Thorax-abd 9 8 – Abdomen sequenced nrITS, ycf1 from ~150 pollinaria Pollinaria sampling A 40 30 20 10 0 Eoc Oli Mio Gen sp. Galeandra Cycnoches Dressleria Catasetinae Clowesia Epidendroideae Higher Catasetum Zygopetalinae Macroclinium Dichaea Warczewiczella Kefersteinia Stenia Chondrorhyncha Polycycnis Stanhopea Soterosanthus Sievenkingia Coryanthes Stanhopeinae C Cymbidiinae 0.93 Catasetinae Bromheadiinae Eulophiinae Eriopsidinae Oncidiinae Gongora Zygopetalinae 1.0 Maxillariinae 0.92 Stanhopeinae (+Coeliopsidinae) (My) Tertiary 40 30 20 10 0 Orchids A B 40 30 20 10 0 0 10 20 30 40 Eoc Oli Mio Mio Oli Eoc Gen sp. Galeandra Exaerete Cycnoches 0.99 Catasetinae Dressleria Clowesia Eufriesea fragrance collection fragrance of Origin Epidendroideae Higher Catasetum Zygopetalinae Eulaema Macroclinium Dichaea Warczewiczella Kefersteinia Stenia Chondrorhyncha Polycycnis Stanhopea Euglossa Soterosanthus D Sievenkingia Coryanthes Stanhopeinae C Cymbidiinae 0.93 Catasetinae Bromheadiinae Eulophiinae Eriopsidinae Oncidiinae Gongora Zygopetalinae 1.0 Maxillariinae 0.92 Stanhopeinae (+Coeliopsidinae) (My) (My) Tertiary Tertiary 40 30 20 10 0 0 10 20 30 40 Orchids Bees (Science, 2011) Leonora Bittleston Fluid and insects collected from 3 Nepenthes species in 3 different sites in Singapore. Counts of macroscopic arthropods: 8 common ‘morphospecies’ including flies, mites and ants Frog-biting midge: Corethrella Mosquitoes: Toxorhynchites, Scuttle fly: Endonepenthia Culex, Tripteroides Anoetid mites: Zwickia Gall midge: Lestodiplosis Insect prey: mostly ant heads Biting midge: Dasyhelea Counts by eye versus sequencing diversity Counts Metabarcoding • 8 arthropod • 189 arthropod “OTUs” in “morphospecies” rarefied table • Plus parasites, algae, protozoa, etc. However, it’s difficult to connect sequences to individuals, especially since reference sequences for most of these organisms are not yet in sequencing databases. Inquiline counts and sequences generally match, but on different scales 4 3 Mosquito Mite 2 Endonepenthia Dasyhelea Lestodiplosis Corethrella ln (Counts + 1) 1 0 0 1.125 2.25 3.375 4.5 ln (sqrt (Rarefied Seqs) + 1) Mosquitoes and mites seem to be underrepresented in count data Phylogenetic trees of dipteran inquilines 18S (ribosomal) CO1 (mitochondrial) “Endonepenthia” “Dasyhelea” “Corethrella” “Lestodiplosis” “Mosquitoes” Relative sequence abundance N. ampullaria communities N. gracilis communities N. rafflesiana communities Obligate insect parasites! Bipartite network of arthropods and pitcher plants N. rafflesiana N. gracilis N. ampullaria Networks can reveal which organisms are shared across different host species and samples. Spring-loaded network of core OTUs present in at least 10% of the samples from each host species. Austral Ecology (2015) Myrmecophiles of the ants of Vachellia (Acacia) drepanolobium Chris Baker Jack Boyle Dino Martins Julianne Lori Pelaez Shapiro Ant-plant symbioses • 465+ myrmecophytic plant species • 100+ phytoecious ant species • Restricted to the tropics East Africa... Vachellia drepanolobium is a dominant component of the flora of East Africa Vachellia drepanolobium with swollen thorn ant domatia Up to 16 different ant species have been recorded inhabiting Vachellia drepanolobium: Crematogaster nigriceps Crematogaster mimosae C. sjostedi Tetraponera penzigi Camponotus rufoglaucus Unidentified spp. Nesomyrmex sp. Three primary ant species occupy trees throughout Kenya, typically one colony per tree Crematogaster mimosae Crematogaster nigriceps Tetraponera penzigi CM CN TP Two species of Crematogaster; One Tetraponera Illustrations by Dino Martins The Plants The Ants Domatia Defensive Extra-floral patrolling nectaries Experimental work by Truman Young, Mau Stanton, Todd Palmer, Rob Pringle and others have shown clear differences in patrolling behavior between different ants C. mimosae C. nigriceps T. penzigi For example, Dino Martins showed that browsing giraffe spend less time feeding on plants inhabited by C. mimosae (Martins, 2010) This system has many third party associates Expanding the network A.drepanolobium fungal communities Chris Baker 4/19 Expanding the network A.drepanolobium fungal communities Chris Baker 4/19 Microdon - a parasitic fly Zoraptera in Tetraponera domatium (feed on fungal spores and hyphae— < 3mm long) Third parties in this system appear to interact at both the mutualistic and parasitic end of the spectrum A systematic survey? Lycaenid butterflies Anthene usamba Lycaenid butterfly that lays eggs on the acacias. The larvae are chemically defended against ant attacks. Do females prefer the more aggressive ant mutualist? Preferences tested in bush house Oviposition Experiment Females were given a choice of saplings inhabited by 3 different ant species, or no ants: • C. mimosae • C. nigriceps • T. penzigi • No ants Females of Anthene usamba laid eggs on plants with C. mimosae or no ants Biol. J. Linn. Soc. 2013 Stable isotope analysis indicates that Anthene usamba is carnivorous, and is likely to be eating ants inside the domatia. Biol. J. Linn. Soc. 2013 45 species of lycaenids parasitize acacia-ant mutualisms Our survey has involved collecting and processing many individual ant colonies from each of the three species throughout their range Workflow Field collection and DNA extraction PCR + sequencing processing COI primers aacccctattaggtggatta atgctacgctagcatgctgg actagtgctattcggatatc actgcatgcggggtagctag OTU 2 statistical and centroid sequence OTU 1 ty ri genetic analyses la i im s % 97 treat each OTU other as a distinct taxon sequences group similar assign taxonomy sequences where possible into ‘OTU’s Numbers summary for myrmecophile data 480 trees sorted 176 trees without myrmecophiles (162 CM, 163 CN, 140 TP) 22,229 domatia 304 trees with myrmecophiles Suyian 6 2000 Suyian 2000 2500 0.5 4 2000 2361 myrmecophiles Kenya meters meters 2000 5000 2500 3000 2 0.0 4000 (median = 3 per tree) 2500 4000 3500 2500 3000 3000 3000 0 2000 2500 2000 2000 1000 2000 0 Kitengela 0 20 40 60 km 1091 with 0 200 km 2000 32 34 36 38 40 42 44 35.5 36.0 36.5 37.0 37.5 sequence data Kenya Kitengela 1270 without 82 different OTUs sequence data (6 high abundance taxa) Numbers summary for myrmecophile data 480 trees sorted 176 trees without myrmecophiles (162 CM, 163 CN, 140 TP) 22,229 domatia 304 trees with myrmecophiles 200 80 Kitengela 2013 2361 myrmecophiles 150 60 full dataset (median = 3 per tree) taxa 40 Suyian 2013 100 chao2 estimator Kitengela 2012 20 50 0 0 1091 with 0 100 200 300 400 500 K12 K13 S13 all sequence data trees collection location/year 1270 without