Control of Developmentally Primed Erythroid Genes by Combinatorial Co-Repressor Actions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hippo/YAP Signaling Pathway: a Promising Therapeutic Target In
Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia To cite this version: Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer, Franck Verrecchia. Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers?. Can- cers, MDPI, 2020, 12 (3), pp.645. 10.3390/cancers12030645. inserm-03004096 HAL Id: inserm-03004096 https://www.hal.inserm.fr/inserm-03004096 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. cancers Review Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Sarah Morice, Geoffroy Danieau, Françoise Rédini, Bénédicte Brounais-Le-Royer and Franck Verrecchia * INSERM, UMR1238, Bone Sarcoma and Remodeling of Calcified Tissues, Nantes University, 44035 Nantes, France; [email protected] (S.M.); geoff[email protected] (G.D.); [email protected] (F.R.); [email protected] (B.B.-L.-R.) * Correspondence: [email protected]; Tel.: +33-244769116 Received: 4 February 2020; Accepted: 7 March 2020; Published: 10 March 2020 Abstract: Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. -
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Analysis of Chromatin-State Plasticity Identifies Cell-Type–Specific Regulators of H3k27me3 Patterns
Analysis of chromatin-state plasticity identifies cell-type–specific regulators of H3K27me3 patterns Luca Pinelloa,1, Jian Xub,1, Stuart H. Orkinb,c,2, and Guo-Cheng Yuana,2 aDepartment of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA 02215; bDivision of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115; and cHoward Hughes Medical Institute, Boston, MA 02115 Contributed by Stuart H. Orkin, December 6, 2013 (sent for review August 13, 2013) Chromatin states are highly cell-type–specific, but the underlying a significant fraction of H3K27me3 is located in distal regions. mechanisms for the establishment and maintenance of their ge- It has been proposed that distal H3K27me3 marks poised nome-wide patterns remain poorly understood. Here we present enhancers, which can be activated through replacing H3K27me3 a computational approach for investigation of chromatin-state by H3K27ac (15, 16). An important question is whether there is plasticity. We applied this approach to investigate an ENCODE a general principle controlling the plastic changes of H3K27me3 ChIP-seq dataset profiling the genome-wide distributions of the patterns across different cell types. H3K27me3 mark in 19 human cell lines. We found that the high To systematically investigate the mechanisms modulating plasticity regions (HPRs) can be divided into two functionally and chromatin-state plasticity, we developed and validated a compu- mechanistically distinct subsets, which correspond to CpG island tational approach to identify distinct lineage-restricted regulators (CGI) proximal or distal regions, respectively. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
ZNF652, a Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription
ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription Raman Kumar,1 Jantina Manning,1 Hayley E. Spendlove,3 Gabriel Kremmidiotis,4 Ross McKirdy,1 Jaclyn Lee,1 David N. Millband,1 Kelly M. Cheney,1 Martha R. Stampfer,5 Prem P. Dwivedi,2 Howard A. Morris,2 and David F. Callen1 1Breast Cancer Genetics Group, Dame Roma Mitchell Cancer Research Laboratories, Department of Medicine, University of Adelaide and Hanson Institute; 2Endocrine Bone Laboratory, Hanson Institute, Adelaide, South Australia, Australia; 3Department of Laboratory Genetics, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia; 4Bionomics, Ltd., Thebarton, South Australia, Australia; and 5Lawrence Berkeley National Laboratory, Berkeley, California Abstract gene effector zinc finger proteins may specifically The transcriptional repressor CBFA2T3is a putative interact with one or more of the ETO proteins to generate breast tumor suppressor. To define the role of CBFA2T3, a defined range of transcriptional repressor complexes. we used a segment of this protein as bait in a yeast (Mol Cancer Res 2006;4(9):655–65) two-hybrid screen and identified a novel uncharacterized protein, ZNF652. In general, primary tumors and cancer Introduction cell lines showed lower expression of ZNF652 than Tumor growth, characterized by unchecked cell division, normal tissues. Together with the location of this gene results from both the overexpression of growth-promoting on the long arm of chromosome 17q, a region of frequent oncogenes and the reduced expression of growth-inhibiting loss of heterozygosity in cancer, these results suggest tumor suppressor genes. These genes often encode proteins that In silico a possible role of ZNF652 in tumorigenesis. -
2017.08.28 Anne Barry-Reidy Thesis Final.Pdf
REGULATION OF BOVINE β-DEFENSIN EXPRESSION THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF DUBLIN FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2017 ANNE BARRY-REIDY SCHOOL OF BIOCHEMISTRY & IMMUNOLOGY TRINITY COLLEGE DUBLIN SUPERVISORS: PROF. CLIONA O’FARRELLY & DR. KIERAN MEADE TABLE OF CONTENTS DECLARATION ................................................................................................................................. vii ACKNOWLEDGEMENTS ................................................................................................................... viii ABBREVIATIONS ................................................................................................................................ix LIST OF FIGURES............................................................................................................................. xiii LIST OF TABLES .............................................................................................................................. xvii ABSTRACT ........................................................................................................................................xix Chapter 1 Introduction ........................................................................................................ 1 1.1 Antimicrobial/Host-defence peptides ..................................................................... 1 1.2 Defensins................................................................................................................. 1 1.3 β-defensins ............................................................................................................. -
FLI1 Gene Fli-1 Proto-Oncogene, ETS Transcription Factor
FLI1 gene Fli-1 proto-oncogene, ETS transcription factor Normal Function The FLI1 gene provides instructions for making the FLI protein, which controls the activity (transcription) of genes. Transcription is the first step in the process of producing proteins. The FLI protein is part of a group of related proteins, called the Ets family of transcription factors, that control transcription. The FLI protein attaches (binds) to certain regions of DNA and turns on (activates) the transcription of nearby genes. The proteins produced from these genes control many important cellular processes, such as cell growth and division (proliferation), maturation (differentiation), and survival. The FLI protein is found primarily in blood cells and is thought to regulate their development. Health Conditions Related to Genetic Changes Ewing sarcoma Mutations involving the FLI1 gene cause a type of cancerous tumor known as Ewing sarcoma. These tumors develop in bones or soft tissues such as nerves and cartilage. There are several types of Ewing sarcoma, including Ewing sarcoma of bone, extraosseous Ewing sarcoma, peripheral primitive neuroectodermal tumor, and Askin tumor. The mutations that cause these tumors are acquired during a person's lifetime and are present only in the tumor cells. This type of genetic change, called a somatic mutation, is not inherited. The most common mutation that causes Ewing sarcoma is a rearrangement (translocation) of genetic material between chromosome 11 and chromosome 22. This translocation, written as t(11;22), fuses part of the FLI1 gene on chromosome 11 with part of another gene called EWSR1 on chromosome 22, creating an EWSR1/FLI1 fusion gene. -
DNA·RNA Triple Helix Formation Can Function As a Cis-Acting Regulatory
DNA·RNA triple helix formation can function as a cis-acting regulatory mechanism at the human β-globin locus Zhuo Zhoua, Keith E. Gilesa,b,c, and Gary Felsenfelda,1 aLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bUniversity of Alabama at Birmingham Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294; and cDepartment of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 Contributed by Gary Felsenfeld, February 4, 2019 (sent for review January 4, 2019; reviewed by James Douglas Engel and Sergei M. Mirkin) We have identified regulatory mechanisms in which an RNA tran- of the criteria necessary to establish the presence of a triplex script forms a DNA duplex·RNA triple helix with a gene or one of its structure, we first describe and characterize triplex formation at regulatory elements, suggesting potential auto-regulatory mecha- the FAU gene in human erythroid K562 cells. FAU encodes a nisms in vivo. We describe an interaction at the human β-globin protein that is a fusion containing fubi, a ubiquitin-like protein, locus, in which an RNA segment embedded in the second intron of and ribosomal protein S30. Although fubi function is unknown, the β-globin gene forms a DNA·RNA triplex with the HS2 sequence posttranslational processing produces S30, a component of the within the β-globin locus control region, a major regulator of glo- 40S ribosome. We used this system to refine methods necessary bin expression. We show in human K562 cells that the triplex is to detect triplex formation and to distinguish it from R-loop stable in vivo. -
Genetic Variability in the Italian Heavy Draught Horse from Pedigree Data and Genomic Information
Supplementary material for manuscript: Genetic variability in the Italian Heavy Draught Horse from pedigree data and genomic information. Enrico Mancin†, Michela Ablondi†, Roberto Mantovani*, Giuseppe Pigozzi, Alberto Sabbioni and Cristina Sartori ** Correspondence: [email protected] † These two Authors equally contributed to the work Supplementary Figure S1. Mares and foal of Italian Heavy Draught Horse (IHDH; courtesy of Cinzia Stoppa) Supplementary Figure S2. Number of Equivalent Generations (EqGen; above) and pedigree completeness (PC; below) over years in Italian Heavy Draught Horse population. Supplementary Table S1. Descriptive statistics of homozygosity (observed: Ho_obs; expected: Ho_exp; total: Ho_tot) in 267 genotyped individuals of Italian Heavy Draught Horse based on the number of homozygous genotypes. Parameter Mean SD Min Max Ho_obs 35,630.3 500.7 34,291 38,013 Ho_exp 35,707.8 64.0 35,010 35,740 Ho_tot 50,674.5 93.8 49,638 50,714 1 Definitions of the methods for inbreeding are in the text. Supplementary Figure S3. Values of BIC obtained by analyzing values of K from 1 to 10, corresponding on the same amount of clusters defining the proportion of ancestry in the 267 genotyped individuals. Supplementary Table S2. Estimation of genomic effective population size (Ne) traced back to 18 generations ago (Gen. ago). The linkage disequilibrium estimation, adjusted for sampling bias was also included (LD_r2), as well as the relative standard deviation (SD(LD_r2)). Gen. ago Ne LD_r2 SD(LD_r2) 1 100 0.009 0.014 2 108 0.011 0.018 3 118 0.015 0.024 4 126 0.017 0.028 5 134 0.019 0.031 6 143 0.021 0.034 7 156 0.023 0.038 9 173 0.026 0.041 11 189 0.029 0.046 14 213 0.032 0.052 18 241 0.036 0.058 Supplementary Table S3. -
Ldb1 Is Essential for Development of Nkx2.1 Lineage Derived Gabaergic and Cholinergic Neurons in the Telencephalon
Developmental Biology 385 (2014) 94–106 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/locate/developmentalbiology Ldb1 is essential for development of Nkx2.1 lineage derived GABAergic and cholinergic neurons in the telencephalon Yangu Zhao a,n,1, Pierre Flandin b,2, Daniel Vogt b, Alexander Blood a, Edit Hermesz a,3, Heiner Westphal a, John L. R. Rubenstein b,nn a Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA b Department of Psychiatry and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94143, USA article info abstract Article history: The progenitor zones of the embryonic mouse ventral telencephalon give rise to GABAergic and cholinergic Received 1 June 2013 neurons. We have shown previously that two LIM-homeodomain (LIM-HD) transcription factors, Lhx6 and Received in revised form Lhx8, that are downstream of Nkx2.1, are critical for the development of telencephalic GABAergic and 8 October 2013 cholinergic neurons. Here we investigate the role of Ldb1, a nuclear protein that binds directly to all LIM-HD Accepted 9 October 2013 factors, in the development of these ventral telencephalon derived neurons. We show that Ldb1 is expressed Available online 21 October 2013 in the Nkx2.1 cell lineage during embryonic development and in mature neurons. Conditional deletion of Ldb1 Keywords: causes defects in the expression of a series of genes in the ventral telencephalon and severe impairment in the Differentiation tangential migration of cortical interneurons from the ventral telencephalon. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Rabbit Mab A
C 0 2 - t GFI1b (D3G2) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 9 4 Web: [email protected] 8 www.cellsignal.com 5 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB, F H M R Mk Endogenous 35, 42 Rabbit IgG Q5VTD9 8328 Product Usage Information Application Dilution Western Blotting 1:1000 Flow Cytometry 1:400 - 1:1600 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity GFI1b (D3G2) Rabbit mAb recognizes endogenous levels of total GFI1b protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Tyr119 of human GFI1b protein. Background GFI1b and its homolog GFI1 are transcriptional repressors and important regulators of erythroid and megakaryocytic development and differentiation (1,2). GFI1b negatively regulates transcription by recruiting chromatin regulatory proteins including CoREST, the histone demethylase LSD1 and HDACs 1 and 2, which associate with GFI1b via its SNAG repression domain (3). GFI1b has also been shown to control the differentiation of erythroid and megakaryocytic progenitors by regulating TGF-β signaling at the bipotent progenitor stage (4). Inactivation of GFI1b in mice leads to embryonic lethality due to failure to produce functional erythrocytes and megakaryocytes (2).