University of Florida Thesis Or Dissertation Formatting

Total Page:16

File Type:pdf, Size:1020Kb

University of Florida Thesis Or Dissertation Formatting EVOLUTION OF THE GENETIC CONTROL OF LEAF DEVELOPMENT WITH AN EMPHASIS ON CARNIVOROUS PITCHER PLANTS By NICHOLAS WILLIAM MILES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2013 1 © 2013 Nicholas William Miles 2 To those who believed in me, especially my Mom and Dad, Heather-Rose, and Susan Spaulding 3 ACKNOWLEDGMENTS I would like to thank my advisors, Pam and Doug Soltis, for their tireless work and support. This dissertation is testament to the saint-like patience they have had with me over the years, and especially this year. I would also like to thank my committee members, Drs. David Oppenheimer and Mark Settles, for the integral part they have played in the forming of my ideas. Both of them and their labs have shared resources that I cannot thank them for enough. Drs. Tsukaya and Yamaguchi, who showed genuine rectitude as hosts to me in a foreign country and enabled me to collect data that I had strived to do for 6 years, I am forever indebted to. The members of the Soltis Lab, who I now view in likeness of family members, I will remember for the rest of my life with great sentiment. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 ABSTRACT ................................................................................................................... 11 CHAPTER 1 INTRODUCTION .................................................................................................... 12 Angiosperm Leaves as a System for the Study of Evolutionary Development (Evo-Devo) .......................................................................................................... 12 Nucleotide Sequencing Technology Leafs Out ....................................................... 15 Evo-Devo Studies of Carnivorous Pitcher Plants .................................................... 16 2 NEO- AND SUB-FUNCTIONALIZATION OF THE PLANT BODY PATTERNING GENE CLASS III HD-ZIP CORRELATES WITH LAND PLANT EVOLUTION ........ 19 Introductory Remarks.............................................................................................. 19 Methods .................................................................................................................. 24 Sequence Retrieval .......................................................................................... 24 Alignment ......................................................................................................... 25 Phylogenetic Analyses ..................................................................................... 25 Results .................................................................................................................... 26 BLAST results .................................................................................................. 26 Phylogenetic analyses ...................................................................................... 26 Discussion .............................................................................................................. 29 3 GENOMIC COEVOLUTION OF HD-ZIP III RELATED PATHWAY GENES ........... 46 Introductory Remarks.............................................................................................. 46 Methods .................................................................................................................. 51 Sequence retrieval ........................................................................................... 51 Alignment ......................................................................................................... 53 Phylogenetic analyses ...................................................................................... 53 Arabidopsis microarray expression .................................................................. 53 Results .................................................................................................................... 54 Paralog numbers .............................................................................................. 54 Pathway proportionality .................................................................................... 54 Lineage evolution ............................................................................................. 55 Discussion .............................................................................................................. 56 5 4 LEAF EVO-DEVO OF THE OF CARNIVOROUS PITCHER PLANT, CEPHALOTUS FOLLICULARIS (CEPHALOTACEAE) .......................................... 77 Introductory Remarks.............................................................................................. 77 Methods .................................................................................................................. 80 RNA extraction and gene amplification ............................................................ 80 Sequence alignment and phylogenetic analysis ............................................... 81 In situ hybridization ........................................................................................... 81 Probe construction ..................................................................................... 81 Tissue fixation ............................................................................................ 82 Hybridization .............................................................................................. 82 Results .................................................................................................................... 83 Discussion .............................................................................................................. 83 5 CONCLUSION ........................................................................................................ 96 APPENDIX A FURTHER CARNIVOROUS PLANT EXPERIMENTS ............................................ 99 AS2 ......................................................................................................................... 99 VIGS Development ............................................................................................... 100 LIST OF REFERENCES ............................................................................................. 107 BIOGRAPHICAL SKETCH .......................................................................................... 116 6 LIST OF TABLES Table page 2-1 GenBank accession numbers of sequences from previous studies of Floyd et al. (2006) and Prigge and Clark (2006) .......................................................... 33 2-2 Sampled Gymnosperm Taxa from 1KP Data.................................................... 34 2-3 Sampled Monilophyte taxa from 1KP data ....................................................... 35 3-1 Number of paralogs of the 4 gene families in the 6 sampled angiosperm genomes. ............................................................................................................ 60 3-2 Proportions of the number of paralogs for each of the 4 gene families in the genomes of the 6 sampled angiosperm genomes. ............................................. 61 3- 3 Places in the genomes of the sampled angiosperm genomes that contain the tandem precursor miR166 sequences. ......................................................... 61 4-1 Nucleotide sequence of primers used to amplify HistoneH4 and YABBY genes in Cephalotus follicularis. ......................................................................... 86 7 LIST OF FIGURES Figure page 1-1 Genetic model controlling leaf development and polarity in angiosperms.. ........ 18 2- 1 Evolution of HD-ZIP III and ZPR in land plants.. ................................................. 36 2-2 Protein domain structure of HD-ZIP III and ZPR................................................. 38 2-3 Phylogenetic tree of the topology found to have the highest likelihood by RAxML for sampled vascular plant HD-ZIP III sequences. ................................. 39 2-4 Subtree of HD-ZIP III vascular plant phylogeny containing lycophtye and PaleoHDZ3 clades. ............................................................................................. 40 2-5 Subtree HD-ZIP III vascular plant phylogeny containing gymnosperm ZPR clade. .................................................................................................................. 42 2-6 Subtree HD-ZIP III vascular plant phylogeny containing monilophyte RBVC8 as well as gymnosperm and angiosperm C8 clades. .......................................... 43 2-7 Gymnosperm RBVC8 as well as gymnosperm and angiosperm RBV subtree of of HD-ZIP III vascular plant phylogeny. .......................................................... 44 2-8 Alignment of gymnosperm ZPR sequences and the Homeodomain-Leucine- Zipper Region of HD-ZIP III. ............................................................................... 45 3-1 Phylogeny of major Angiosperm lineages and eudicot orders with the placement of sampled taxa. ................................................................................ 62 3-2 Phylogeny and ancestral genome evolution
Recommended publications
  • Elaeocarpus Dentatus Var. Dentatus
    Elaeocarpus dentatus var. dentatus COMMON NAME Hinau SYNONYMS Dicera dentata J.R.Forst. et G.Forst., Elaeocarpus hinau A.Cunn., Elaeocarpus cunninghamii Raoul FAMILY Elaeocarpaceae AUTHORITY Elaeocarpus dentatus (J.R.Forst. et G.Forst.) Vahl var. dentatus FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Trees & Shrubs - Dicotyledons NVS CODE Reikorangi Valley. Mar 1986. Photographer: ELADEN Jeremy Rolfe CHROMOSOME NUMBER 2n = 30 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened BRIEF DESCRIPTION An image of hinau flowers. Photographer: DoC Canopy tree bearing harsh thin leaves that have obvious pits on the underside and with small teeth along margins. Twigs with small hairs. Adult leaves 10-12cm long by 2-3cm wide, with a sharp tip, Juvenile leaves narrower. Flowers white, lacy, in conspicuous sprays. Fruit purple, oval, 12-15mm long. DISTRIBUTION Endemic. North, and South Island as far South Westland in the west and Christchurch in the east. HABITAT Common tree of mainly coastal and lowland forest though occasionally extending into montane forest. FEATURES Tree up to 20 m tall (usually less), with broad spreading crown. Trunk 1 m diam., bark grey. Branches erect then spreading, branchlets silky hairy when young. Petioles stout, 20-25 mm long. Leaves leathery, (50-)100-120 x 20-30 mm, narrow- to obovate-oblong, broad-obovate, oblanceolate, apex obtuse or abruptly acuminate, dark green and glabrescent above, off-white, silky-hairy below; margins somewhat sinuate, recurved, serrate to subentire. Inflorescence a raceme 100-180 mm long, 8-12(-20)-flowered.
    [Show full text]
  • Seed Ecology Iii
    SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst
    [Show full text]
  • Dischidia (Apocynaceae, Asclepiadoideae) in Laos and Vietnam
    BLUMEA 50: 113–134 Published on 22 April 2005 http://dx.doi.org/10.3767/000651905X623300 DISCHIDIA (APOCYNACEAE, ASCLEPIADOIDEAE) IN LAOS AND VIETNAM TatYANA LIVSHultZ1, TRAN THE BACH2, SOMCHANH BOUNPHANMY3 & DANIEL SCHOTT4 SUMMARY Two new species, Dischidia dohtii Tran & Livsh. and D. cornuta Livsh., are described and illustrated. Dischidia rimicola Kerr is illustrated for the first time. All three species are associated with tree- nesting ants of the genus Crematogaster. Presentation experiments with seeds of D. rimicola indi- cate that they are attractive to the ants. The possible affinity between D. dohtii and the enigmatic D. khasiana Hook.f. from north-eastern India is discussed; D. khasiana is lectotypified. A key to the 14 species of Dischidia documented from Vietnam and Laos and a list of exsiccatae are provided. Key words: Dischidia, Apocynaceae, Asclepiadaceae, morphology, taxonomy, ecology, ant plant. INTRODUCTION The genus Dischidia R.Br. comprises approximately eighty species of epiphytic vines in Indochina, Malesia, Melanesia, and the east Pacific. Many species grow on the nests of arboreal ants (Kaufmann et al., 2001 and references therein). Species of sec- tion Ascidophora K. Schum. have highly modified pitcher leaves that function as ant houses (Janzen, 1974). While it has recently been the subject of floristic treatments (Rintz, 1980; Li et al., 1995; Forster et al., 1996; Jagtap & Singh, 1999) and studies of its ecological associations with ants (Treseder et al., 1995; Kaufmann et al., 2001), both the taxonomy and ecology of Dischidia remain poorly understood through most of its range. We made field observations on three species in the highlands of Laos, in- cluding two that are here described as new.
    [Show full text]
  • Australia Lacks Stem Succulents but Is It Depauperate in Plants With
    Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs.
    [Show full text]
  • Acacia Pruinosa A.Cunn
    WATTLE Acacias of Australia Acacia pruinosa A.Cunn. ex Benth. Source: Australian Plant Image Index (a.31257). Source: W orldW ideW attle ver. 2. Source: W orldW ideW attle ver. 2. ANBG © M. Fagg, 1998 Published at: w w w .w orldw idew attle.com Published at: w w w .w orldw idew attle.com See illustration. See illustration. Acacia pruinosa occurrence map. O ccurrence map generated via Atlas of Living Australia (https://w w w .ala.org.au). Common Name Frosty Wattle Family Fabaceae Distribution Extends from Miles, south-eastern Qld, to the tablelands, slopes and adjacent plains of northern N.S.W., as far W as Emmaville and S to Cuttabri. Description Pruinose shrub or tree to 6 m high. Bark smooth, dark red or purplish. Branchlets inconspicuously ridged, reddish or blue-black, glossy, ±pruinose, glabrous. Young foliage-tips greyish green. Leaves subcoriaceous, glaucous; petiole above pulvinus mostly 1.8–6 cm long, usually with a prominent elongated gland at base of or to ½-way below lowest pair of pinnae, glabrous; rachis 1.5–10 cm long, with a gland at base of all or some pairs of pinnae, glabrous; interjugary glands absent; pinnae (1–) 2–4 (–5) pairs, widely spaced, 3–9 cm long; pinnules 7–20 pairs, narrowly oblong, 8–18 mm long, 2.5–5 (–6) mm wide, obtuse, glabrous, the main nerve percurrent with two shorter secondary nerves from base not reaching margin. Inflorescences in axillary racemes or false-panicles or terminal false-panicles; peduncles 3–8 mm long. Heads globular, 5–10 mm diam., 40–60-flowered, golden; calyx-lobes spathulate.
    [Show full text]
  • Dancing on the Head of a Pin: Mites in the Rainforest Canopy Download 673.69 KB
    Records of the Western Australian Museum Supplement Number 52: 49-53 (1995). Dancing on the head of a pin: mites in the rainforest canopy David Evans WaIter Department of Entomology and Centre for Tropical Pest Management, University of Queensland, St Lucia 4072, Australia Abstract - Mites, the most diverse taxon in the Arachnida, are a major component of the rainforest canopy fauna. Twenty-nine species of mites were identified from the outermost canopy (leaves and their subtending stems) of a single rose marara tree (Pseudoweinmannia lachnocarpa) growing in subtropical rainforest in south-eastern Queensland. None of these species were found in suspended soils collected from a treehole and the root mats of two epiphytic ferns on the same tree, although 21 other mite species lived in the soils. Forty-seven leaves and 290 cm of small stems from brown beech trees (Pennantia cunninghamii) at two subtropical rainforest sites 110 km apart contained 1615 mites representing 43 species. The average brown beech leaf contained three times as many species as the average rose marara leaf. Most mites collected from brown beech leaves were found within domatia, structures lacking on rose marara leaves. When domatia were blocked, average species number per leaf was reduced to half that on leaves with open domatia. Only four mite species were common to both sites, and only five species were found on both rose marara and brown beech, suggesting that a very diverse fauna awaits discovery. INTRODUCTION two sites to determine whether the arboreal fauna The Acari are admittedly the most abundant and is similar between sites and test the effect of leaf diverse group in the Arachnida; yet, mites often domatia on the diversity of the foliar fauna.
    [Show full text]
  • Deletion of Cephalotus Follicularis from Appendix II
    Prop. 11.6 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA A. PROPOSAL Deletion of Cephalotus follicularis from Appendix II. B. PROPONENT Commonwealth of Australia (Environment Australia) C. SUPPORTING STATEMENT The monotypic genus Cephalotus is an insectivorous plant endemic to south western Australia. It occurs on wetland margins throughout the southwest corner of Western Australia. This portion of Western Australia has a high rainfall and as a result there are extensive areas of suitable habitat, especially on the south coastal plain. Within its range are large areas of government owned forests, National Parks and other reserves where the species is common and is likely to occur in vast numbers. The species is easily propagated from small segments of rhizomes and, as a result, it is commonly traded and is widely cultivated. Morphological variation in wild populations is not evident. As the species is easily propagated, it is unlikely that cultivated stocks are derived from wild collections. Cephalotus follicularis has been identified by the CITES Plants Committee under the Ten Year Review as a candidate for deletion from Appendix II as there has been no recorded trade in wild taken specimens since the species was listed. The proposal received full endorsement of the 5th meeting of the CITES Plants Committee in Mexico, May 1994. 1. Taxonomy 1.1. Class Magnoliatae 1.2. Order Rosales 1.3. Family Cephalotaceae 1.4. Genus/species Cephalotus follicularis Labillardière 1806 1.5. Common name Western Australian pitcher plant; Albany pitcher plant 2. Biological data 2.1. Distribution The area of distribution ranges over 400 km from NW to SE and corresponds with the meso- mediterranean climate of the extreme south western part of Australia.
    [Show full text]
  • Giant Cephalotus of Unknown Origins
    Giant Cephalotus of unknown origins Dick Chan • P.O. Box 2252 • Pasadena • California 91102 • USA • [email protected] Introduction I have been growing Cephalotus follicularis for over 20 years. Initially, I was obsessed with grow- ing specimen-type Cephalotus of different clones and to prove once-and-for-all that this was not a difficult plant to grow. Countless plants have met their demise as I experimented with various meth- ods of cultivation. For those that have survived and flourished, I noticed one plant in particular that grew larger, more vigorous, and had a different pitcher/leaf morphology than Cephalotus ‘Hummer’s Giant’ and the typical Cephalotus. However, I do not believe this plant to be just a better-grown speci- men of ‘Hummer’s Giant’. Through the years, I have given and sold this plant to individuals calling it the “Bubble Giant”, however, I have not received nor heard any feedback as to the well-being of those plants. So, for those reading this article and have received this plant from me, I would appreciate seeing some photos. For the remainder of this article, this plant will be referred to as the “unknown”. Origins During my initial spark-of-entry into the hobby, I started collecting Cephalotus cuttings, plants, stems, and leaves from anyone who had the plant and was willing to give or sell a piece to me. Be- cause of that activity, this plant is of an unknown origin because of the feverish pace by which I went about amassing what I had hoped would become a genetically diverse collection of plants.
    [Show full text]
  • Elaeocarpaceae
    Brazilian Journal of Botany 35(1):119-123, 2012 Three new species of Sloanea L. (Elaeocarpaceae) from the Central Amazon, Brazil1 AMANDA SHIRLÉIA PINHEIRO BOEIRA2,5, ALBERTO VICENTINI3 and JOSÉ EDUARDO LAHOZ DA SILVA RIBEIRO4 (received: November 3, 2011; accepted: February 16, 2012) ABSTRACT – (Three new species of Sloanea L. (Elaeocarpaceae) from the Central Amazon, Brazil). Three new species of Sloanea L. are recognized based on specimens collected in the Adolpho Ducke Forest Reserve. These new species are morphologically distinct from other Sloanea in the Neotropics in terms of their vegetative and reproductive characters. The Ducke Reserve contains a total of 18 species of Sloanea, and the species closest to these new taxa occur there. Morphological descriptions and illustrations are provided, together with comments concerning morphological similarities with other species, as well as their geographic distributions and their phenologies. Key words - characters, Ducke Forest Reserve, floristic survey, morphology, taxonomy INTRODUCTION Ducke Forest Reserve that are morphologically similar to and possibly related to other species that occur in the The family Elaeocarpaceae comprises 15 genera and same reserve. We present descriptions with commentaries approximately 500 species (Crayn et al. 2006, Heywood concerning the morphologically similar species as well 2007). Sloanea Linnaeu is the second largest genera with as their differences. approximately 180 species distributed throughout the tropics and subtropics, with the exception of the African continent (Smith 1954). According to the identification Material AND METHODS guide of the Adolpho Ducke Forest Reserve (Vicentini We examined herbarium specimens of the genus Sloanea 1999), the family Elaeocarpaceae is represented there prepared during the Projeto Flora (PFRD) floristic survey by 17 species of the genus Sloanea, although four of the Ducke Reserve (Ribeiro et al.
    [Show full text]
  • Hoya New Volume
    HOYA NEW Oh There it is ! American Samoa, trees dripping with Hoyas 1 A pdf publication devoted to the Genus Hoya ISSN 2329-7336 Volume 2 Issue 4 July 2014 Editor: Dale Kloppenburg Contents When a species is collected from the wild, I feel it is wise to identify it, propagate it and name it. In this way it will eventually get it into commercial channels, be distributed to all those interested in this genus and thus be preserved. If in the future the species is lost through natural causes or forest destruction it will still be here on earth in your collection. Corrections: Vol. 2 – 2 May 2014, Katherine Challis at IPNI has pointed out that “stemma” is a singular neuter III so the endings on the two following Eriostemma species should be (corrected) as follows. Eriostemma davaoense Kloppenburg. Eriostemma suluense Kloppenburg. The following new species are presented in PDF format with ISSN number. 1. Eriostemma guppyi Kloppenburg 2. Eriostemma smarense Kloppenburg 3. Hoya lagunaensis Kloppenburg 4. Hoya amoena subsp. bogorensis T. Green & Kloppenburg 5. Dischidia tonsuensis T. Green & Kloppenburg NOTE: please see the Website publication of these species at “www.rare- hoyas.com”. Go to end and click on “publication” to access new species publications. 2 Eriostemma guppyi Kloppenburg ISSN 2329-7336 Type description: H. Guppyi, Oliv. in Guppy, 'Solomon Islands,' p. 298 ex Hook. In Icones Plantarum 23 (1892) 2247, ramulis ultiimis parce hirtellis deinde glabratis foliis petiolatis coriaceis late ellipticis breviter acuminatis cuspidutisve basi late rotundatis subcordatisve supra glabris v. fere glabris subtus plus minus hirtellis 1-costatis nervis lateralibus primiariis subtus utrinque 7-9, umbellis pedunculatis pedunculis pedicellisque glabris, calycis parvi corollae tubo 2-4-plo brevioris carnosuli 5-partiti lobis ovatis obtusis ciliolatis, corollae rotatae lobis patentibus ovatis v.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Ancistrocladaceae
    Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100
    [Show full text]