On the Theory of Dark Matter Superfluidity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of the Science of Superconductivity and Superfluidity
Universal Journal of Physics and Application 1(4): 392-407, 2013 DOI: 10.13189/ujpa.2013.010405 http://www.hrpub.org Superconductivity and Superfluidity-Part I: The development of the science of superconductivity and superfluidity in the 20th century Boris V.Vasiliev ∗Corresponding Author: [email protected] Copyright ⃝c 2013 Horizon Research Publishing All rights reserved. Abstract Currently there is a common belief that the explanation of superconductivity phenomenon lies in understanding the mechanism of the formation of electron pairs. Paired electrons, however, cannot form a super- conducting condensate spontaneously. These paired electrons perform disorderly zero-point oscillations and there are no force of attraction in their ensemble. In order to create a unified ensemble of particles, the pairs must order their zero-point fluctuations so that an attraction between the particles appears. As a result of this ordering of zero-point oscillations in the electron gas, superconductivity arises. This model of condensation of zero-point oscillations creates the possibility of being able to obtain estimates for the critical parameters of elementary super- conductors, which are in satisfactory agreement with the measured data. On the another hand, the phenomenon of superfluidity in He-4 and He-3 can be similarly explained, due to the ordering of zero-point fluctuations. It is therefore established that both related phenomena are based on the same physical mechanism. Keywords superconductivity superfluidity zero-point oscillations 1 Introduction 1.1 Superconductivity and public Superconductivity is a beautiful and unique natural phenomenon that was discovered in the early 20th century. Its unique nature comes from the fact that superconductivity is the result of quantum laws that act on a macroscopic ensemble of particles as a whole. -
Cosmological Relaxation of the Electroweak Scale
Selected for a Viewpoint in Physics week ending PRL 115, 221801 (2015) PHYSICAL REVIEW LETTERS 27 NOVEMBER 2015 Cosmological Relaxation of the Electroweak Scale Peter W. Graham,1 David E. Kaplan,1,2,3,4 and Surjeet Rajendran3 1Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, California 94305, USA 2Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA 3Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, California 94720, USA 4Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583, Japan (Received 22 June 2015; published 23 November 2015) A new class of solutions to the electroweak hierarchy problem is presented that does not require either weak-scale dynamics or anthropics. Dynamical evolution during the early Universe drives the Higgs boson mass to a value much smaller than the cutoff. The simplest model has the particle content of the standard model plus a QCD axion and an inflation sector. The highest cutoff achieved in any technically natural model is 108 GeV. DOI: 10.1103/PhysRevLett.115.221801 PACS numbers: 12.60.Fr Introduction.—In the 1970s, Wilson [1] had discovered Our models only make the weak scale technically natural that a fine-tuning seemed to be required of any field theory [9], and we have not yet attempted to UV complete them which completed the standard model Higgs sector, unless for a fully natural theory, though there are promising its new dynamics appeared at the scale of the Higgs mass. -
10. Electroweak Model and Constraints on New Physics
1 10. Electroweak Model and Constraints on New Physics 10. Electroweak Model and Constraints on New Physics Revised March 2020 by J. Erler (IF-UNAM; U. of Mainz) and A. Freitas (Pittsburg U.). 10.1 Introduction ....................................... 1 10.2 Renormalization and radiative corrections....................... 3 10.2.1 The Fermi constant ................................ 3 10.2.2 The electromagnetic coupling........................... 3 10.2.3 Quark masses.................................... 5 10.2.4 The weak mixing angle .............................. 6 10.2.5 Radiative corrections................................ 8 10.3 Low energy electroweak observables .......................... 9 10.3.1 Neutrino scattering................................. 9 10.3.2 Parity violating lepton scattering......................... 12 10.3.3 Atomic parity violation .............................. 13 10.4 Precision flavor physics ................................. 15 10.4.1 The τ lifetime.................................... 15 10.4.2 The muon anomalous magnetic moment..................... 17 10.5 Physics of the massive electroweak bosons....................... 18 10.5.1 Electroweak physics off the Z pole........................ 19 10.5.2 Z pole physics ................................... 21 10.5.3 W and Z decays .................................. 25 10.6 Global fit results..................................... 26 10.7 Constraints on new physics............................... 30 10.1 Introduction The standard model of the electroweak interactions (SM) [1–4] is based on the gauge group i SU(2)×U(1), with gauge bosons Wµ, i = 1, 2, 3, and Bµ for the SU(2) and U(1) factors, respectively, and the corresponding gauge coupling constants g and g0. The left-handed fermion fields of the th νi ui 0 P i fermion family transform as doublets Ψi = − and d0 under SU(2), where d ≡ Vij dj, `i i i j and V is the Cabibbo-Kobayashi-Maskawa mixing [5,6] matrix1. -
Sounds of a Supersolid A
NEWS & VIEWS RESEARCH hypothesis came from extensive population humans, implying possible mosquito exposure long-distance spread of insecticide-resistant time-series analysis from that earlier study5, to malaria parasites and the potential to spread mosquitoes, worsening an already dire situ- which showed beyond reasonable doubt that infection over great distances. ation, given the current spread of insecticide a mosquito vector species called Anopheles However, the authors failed to detect resistance in mosquito populations. This would coluzzii persists locally in the dry season in parasite infections in their aerially sampled be a matter of great concern because insecticides as-yet-undiscovered places. However, the malaria vectors, a result that they assert is to be are the best means of malaria control currently data were not consistent with this outcome for expected given the small sample size and the low available8. However, long-distance migration other malaria vectors in the study area — the parasite-infection rates typical of populations of could facilitate the desirable spread of mosqui- species Anopheles gambiae and Anopheles ara- malaria vectors. A problem with this argument toes for gene-based methods of malaria-vector biensis — leaving wind-powered long-distance is that the typical infection rates they mention control. One thing is certain, Huestis and col- migration as the only remaining possibility to are based on one specific mosquito body part leagues have permanently transformed our explain the data5. (salivary glands), rather than the unknown but understanding of African malaria vectors and Both modelling6 and genetic studies7 undoubtedly much higher infection rates that what it will take to conquer malaria. -
Lecture Notes for Quantum Matter
Lecture Notes for Quantum Matter MMathPhys c Professor Steven H. Simon Oxford University July 24, 2019 Contents 1 What we will study 1 1.1 Bose Superfluids (BECs, Superfluid He, Superconductors) . .1 1.2 Theory of Fermi Liquids . .2 1.3 BCS theory of superconductivity . .2 1.4 Special topics . .2 2 Introduction to Superfluids 3 2.1 Some History and Basics of Superfluid Phenomena . .3 2.2 Landau and the Two Fluid Model . .6 2.2.1 More History and a bit of Physics . .6 2.2.2 Landau's Two Fluid Model . .7 2.2.3 More Physical Effects and Their Two Fluid Pictures . .9 2.2.4 Second Sound . 12 2.2.5 Big Questions Remaining . 13 2.3 Curl Free Constraint: Introducing the Superfluid Order Parameter . 14 2.3.1 Vorticity Quantization . 15 2.4 Landau Criterion for Superflow . 17 2.5 Superfluid Density . 20 2.5.1 The Andronikoshvili Experiment . 20 2.5.2 Landau's Calculation of Superfluid Density . 22 3 Charged Superfluid ≈ Superconductor 25 3.1 London Theory . 25 3.1.1 Meissner-Ochsenfeld Effect . 27 3 3.1.2 Quantum Input and Superfluid Order Parameter . 29 3.1.3 Superconducting Vortices . 30 3.1.4 Type I and Type II superconductors . 32 3.1.5 How big is Hc ............................... 33 4 Microscopic Theory of Bosons 37 4.1 Mathematical Preliminaries . 37 4.1.1 Second quantization . 37 4.1.2 Coherent States . 38 4.1.3 Multiple orbitals . 40 4.2 BECs and the Gross-Pitaevskii Equation . 41 4.2.1 Noninteracting BECs as Coherent States . -
Lepton Flavor at the Electroweak Scale
Lepton flavor at the electroweak scale: A complete A4 model Martin Holthausen1(a), Manfred Lindner2(a) and Michael A. Schmidt3(b) (a) Max-Planck Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany (b) ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, Victoria 3010, Australia Abstract Apparent regularities in fermion masses and mixings are often associated with physics at a high flavor scale, especially in the context of discrete flavor symmetries. One of the main reasons for that is that the correct vacuum alignment requires usually some high scale mechanism to be phenomenologically acceptable. Contrary to this expectation, we present in this paper a renormalizable radiative neutrino mass model with an A4 flavor symmetry in the lepton sector, which is broken at the electroweak scale. For that we use a novel way to achieve the VEV alignment via an extended symmetry in the flavon potential proposed before by two of the authors. We discuss various phenomenological consequences for the lepton sector and show how the remnants of the flavor symmetry suppress large lepton flavor violating processes. The model naturally includes a dark matter candidate, whose phenomenology we outline. Finally, we sketch possible extensions to the quark sector and discuss its implications for the LHC, especially how an enhanced diphoton rate for the resonance at 125 GeV can be explained within this model. arXiv:1211.5143v2 [hep-ph] 5 Feb 2013 [email protected] [email protected] [email protected] 1 Introduction Much progress has been achieved in the field of particle physics during the last year. -
The Fifth Force [Franklin 1993], Which Gives a Detailed Annotated History of the fifth Force Effort Along with Extensive References
Eur. Phys. J. H DOI: 10.1140/epjh/e2015-60044-5 THE EUROPEAN PHYSICAL JOURNAL H Personal recollection The fifth force: A personal history Ephraim Fischbacha Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA Received 12 September 2015 / Received in final form 14 September 2015 Published online 22 October 2015 c EDP Sciences, Springer-Verlag 2015 Abstract. On January 6, 1986, a paper written by our group appeared in Physical Review Letters entitled “Reanalysis of the E¨otv¨os Exper- iment”. In that Letter we reanalyzed a well-known 1922 paper by E¨otv¨os, Pek´ar, and Fekete (EPF) which compared the accelerations of samples of different composition to the Earth. Our surprising con- clusion was that “Although the E¨otv¨os experiment has been universally interpreted as having given null results, we find in fact that this is not the case”. Two days later a front page story appeared in the New York Times under the headline “Hints of 5th Force in Universe Challenge Galileo’s Findings”, and so was born the concept of a “fifth force”. In this personal history I review the pre-history which motivated our pa- per, and discuss details of our reanalysis of the EPF paper that have not been presented previously. Our work led to illuminating correspondence with Robert Dicke and Richard Feynman which are presented here for the first time. I also discuss an interesting meeting with T.D. Lee, one of whose papers with C.N. Yang provided part of the theoretical mo- tivation for our work. -
Vacuum Energy
Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant. -
Colloidal Crystal: Emergence of Long Range Order from Colloidal Fluid
Colloidal Crystal: emergence of long range order from colloidal fluid Lanfang Li December 19, 2008 Abstract Although emergence, or spontaneous symmetry breaking, has been a topic of discussion in physics for decades, they have not entered the set of terminologies for materials scientists, although many phenomena in materials science are of the nature of emergence, especially soft materials. In a typical soft material, colloidal suspension system, a long range order can emerge due to the interaction of a large number of particles. This essay will first introduce interparticle interactions in colloidal systems, and then proceed to discuss the emergence of order, colloidal crystals, and finally provide an example of applications of colloidal crystals in light of conventional molecular crystals. 1 1 Background and Introduction Although emergence, or spontaneous symmetry breaking, and the resultant collective behav- ior of the systems constituents, have manifested in many systems, such as superconductivity, superfluidity, ferromagnetism, etc, and are well accepted, maybe even trivial crystallinity. All of these phenonema, though they may look very different, share the same fundamental signature: that the property of the system can not be predicted from the microscopic rules but are, \in a real sense, independent of them. [1] Besides these emergent phenonema in hard condensed matter physics, in which the interaction is at atomic level, interactions at mesoscale, soft will also lead to emergent phenemena. Colloidal systems is such a mesoscale and soft system. This size scale is especially interesting: it is close to biogical system so it is extremely informative for understanding life related phenomena, where emergence is origin of life itself; it is within visible light wavelength, so that it provides a model system for atomic system with similar physics but probable by optical microscope. -
Fifth Forces
FIFTH FORCES Symmetry Tests in Nuclei and Atoms KITP, Santa Barbara Jonathan Feng, UC Irvine 19 September 2016 19 Sep 2016 Feng 1 FUNDAMENTAL FORCES • We know of four fundamental forces Gravity Electromagnetism Strong Weak • A fifth one would be a big deal • Forces can be mediated by a host of particles: pions, Higgs boson, dilaton, towers of KK gravitons,... • In this talk, “5th force” refers to a force mediated by a new spin-1 gauge boson 19 Sep 2016 Feng 2 5TH FORCE MOTIVATION: UNIFICATION • Quantum numbers: e.g., SU(3) x SU(2) x U(1) à SO(10) • Unification of couplings: at a perturbative value and at a scale below Mplanck but high enough to satisfy proton decay • Any GUT group SO(10) or bigger has rank > 4, implies 5th force: U(1)B-L , Z’ gauge bosons, etc. 19 Sep 2016 Feng 3 5TH FORCE MOTIVATION: DARK MATTER • All evidence for dark matter is gravitational. Perhaps its in a hidden sector, composed of particles with no SM gauge interactions (electromagnetic, weak, strong) Hidden SM X • This hidden sector may have a rich structure with matter and forces of its own Lee, Yang (1956); Kobsarev, Okun, Pomeranchuk (1966); Blinnikov, Khlopov (1982); Foot, Lew, Volkas (1991); Hodges (1993); Berezhiani, Dolgov, Mohapatra (1995); … 19 Sep 2016 Feng 4 DM PORTALS • Astrophysics is sensitive to DM-DM interactions, but particle and nuclear physics are determined by DM-SM interactions • There are many ways the hidden particles could couple to us. Use effective operators as an organizing principle: where the operators are grouped by their mass dimension, with [scalar] = 1, [fermion] = 3/2, [Fµν] = 2 • M is a (presumably) large “mediator mass,” so start with dimension 4 operators. -
Composite Higgs Models with “The Works”
Composite Higgs models with \the works" James Barnard with Tony Gherghetta, Tirtha Sankar Ray, Andrew Spray and Callum Jones With the recent discovery of the Higgs boson, all elementary particles predicted by the Standard Model have now been observed. But particle physicists remain troubled by several problems. The hierarchy problem Why is the Higgs mass only 126 GeV? Quantum effects naively 16 suggest that mh & 10 GeV would be more natural. Flavour hierarchies Why is the top quark so much heavier than the electron? Dark matter What are the particles that make up most of the matter in the universe? Gauge coupling unification The three gauge couplings in the SM nearly unify, hinting towards a grand unified theory, but they don't quite meet. It feels like we might be missing something. With the recent discovery of the Higgs boson, all elementary particles predicted by the Standard Model have now been observed. However, there is a long history of things that looked like elementary particles turning out not to be Atoms Nuclei Hadrons Splitting the atom Can we really be sure we have reached the end of the line? Perhaps some of the particles in the SM are actually composite. Compositeness in the SM also provides the pieces we are missing The hierarchy problem If the Higgs is composite it is shielded from quantum effects above the compositeness scale. Flavour hierarchies Compositeness in the fermion sector naturally gives mt me . Dark matter Many theories predict other composite states that are stabilised by global symmetries, just like the proton in the SM. -
Effects of the Gravivector and Graviscalar Fields in N = 2,8
TTWOOlfiS LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-96/026 (P) 30 Maggio 1996 la //" f"" ^ \p” o^Xp Effects of the Gravi vector and Graviscalar Fields in N = 2,8 Supergravity Stefano Bellucci INFN-Laboratori Nazionali di Frascati, P.O. Box 13, 1-00044 Frascati, Roma (Italy) and Valerio Faraoni Department of Physics and Astronomy, University of Victoria P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada) Abstract The available tests of the equivalence principle constrain the mass of the Higgs- like boson appearing in extended supergravity theories. We determine the con straints imposed by high precision experiments on the antigravity fields (gravivec- tor and graviscalar) arising from N = 2,8 supergravity. iimoN OF THIS DOCUMENT IS UNLIMITED PACS: 04.65+e, 04.80.Cc FOREIGN SALE! PROHIBITED Accepted for publication in Physics Letters B DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document — 2 — The discovery that N > 1 supergravity theories lead to antigravity is due to the work of the late J. Scherk [1, 2]. In a recent paper we have revived the interest for the implications of extended supergravity theories for antigravity [3]. This interest is connected to the high precision experiment at LEAR (CERN) measuring the difference in the gravitational acceleration of the proton and the antiproton [4]. For a review of earlier ideas about antigravity the reader is referred to the extensive article by Nieto and Goldman (5] and the references therein. The supergravity multiplet in the N = 2,8 cases contains, in addition to the graviton (J = 2), a vector field Aj, (J — 1).