Normal Infant Brain Anatomy: Correlated Real-Time Sonograms and Brain Specimens

Total Page:16

File Type:pdf, Size:1020Kb

Normal Infant Brain Anatomy: Correlated Real-Time Sonograms and Brain Specimens 339 Normal Infant Brain Anatomy: Correlated Real-Time Sonograms and Brain Specimens Asterios Pigadas 1 An investigation of the identifiable real-time sonographic features of the normal Joseph R. Thompson 1 infant brain in the horizontal, coronal, inclined coronal, and midsagittal planes was Gerald L. Grube2 undertaken. Correlations were made of sonograms of intact brains in vitro, correspond­ ing brain sections, and sonograms in vivo. A large number of anatomic structures could be consistently depicted including cisterns, fissures, falx cerebri, tentorium cerebelli, ventricles, brainstem, cerebellum, basal ganglia, thalami, and corpus callosum. Pulsa­ tions of intracranial arteries, visible by real-time sonography, were of considerable help in identifying various structures. The investigation provides a reference of sonographic anatomy of the brain displayed in four clinically useful imaging planes. Early investigators of diagnosti c sonography were faced with th e probl ems of small-aperture unfocused transducers. In 1967, White et al. [1] summari zed these problems. In 1972, Kossoff and Garrett [2] reported intracrani al detail in fetal echograms using a weakl y focused 2 MHz transducer. They subsequently published a sonographic atl as of th e normal brain of infants using a focused 3 MHz transducer-contact C.A.L. echoscope [3]. McRae [4] and White [5], how­ ever, questioned th eir ability to identify those intracranial structures. In 1976 , Heimberger et al. [6], using large-aperture f oc us ~9 transducers, managed to display the outlines of th e th alamus, internal capsule, and substanti a ni gra in isolated excised brains. Recently Johnson et al. [7] showed sonographic anatomy in the axial pl ane and examples of intraventric ul ar hemorrhage in hi gh ri sk infants using B-mode contact transducers. The advent of versatil e real-time transducers has stimulated us to do more detailed imaging in several pl anes to establi sh a basic anatomy for use in clinical work. Real-time as opposed to stati c scanning was chosen because: 1. Recognizabl e pulsati ons of th e intracrani al vessels within fi ssures and cisterns and of the choroid pl exuses within the ventric les provides easier identi­ Received October 26. 1979; accepted after revision Febru ary 10, 1981. fication of these structures. Presented at the annual meetings of the Amer­ 2 . The real-time probe can be easil y maneuve red so th at the ultrasonic beam ican Insti tute of Ullrasound in Medicine, Montreal, is perpendicular to the intracranial structure under stu dy, th erefore receiving August 1979 and the Western Neuroradiological stronger reflecting echoes for better images. Sociely. Carm el, Ca lifornia, October 1979. Skolnick et al. [8 ] used a servo-controlled real-time scanner to detect dilated ' Deparlment of Radiati on Sciences, Secti on of Neuroradiology, Lorn a Linda Universi ty School of ventricles and correlated th e findings with computed tomography. We th ought it Medic ine, Lorn a Linda, CA 92350. Address reprint would be more useful to correlate real-time sonography and anatomic secti ons, requests to J . R. Thompson. in pl anes avail abl e for c linical examinati on. 2Department of Radiation Sciences, Section of Diagnosti c Ullrasound, Lorn a Li nda University School of Medicine, Lorn a Linda, CA 92350. This paper appears in the July / August 1981 Materals and Methods issue of AJNR and the October 1981 issue of AJR. The sonographic examinati ons were performed by using either a linear phased array AJNR 2:339-344, July / AU9ust 1981 0 0 195- 6 108/ 8 1/ 0204 - 0339 $00.00 transducer operating at 2.25 MHz and d isplaying 84 fan-shaped images at a frame rate © American Roentgen Ray Society of 30 / sec (Vari an V-3000), or an annular array transducer operating at 2.25 M Hz ± 15% 340 PIGADAS ET AL AJNR:2, July/ August 1981 Fig. 1.- Transducer placemenl for multiplanar imaging. A B A B c Fig. 2.-Horizontal plane at level of c hiasmatic c istern. A, In vitro real­ Ten = tentorium. Optic chiasm (black arrow); aqueducl of Sylvius (white time sonogram. B , Anatomic sectio n . C, In vivo. CC = chiasmati c c istern ; Int arrow); temporal horn (arrowhead). F = interh emispheric fi ssure; Syl F = sylvian fissure. M es = mesencephalon; and displaying 24 0 angle sector im ages at a selectable frame rate (Varian V-3000) was placed over the temporal squama for the of 1 or 12 / sec (Xerox 1505-4). horizontal planes and over the anterior fontanelle for the coronal, Three excised brain specimens were fi xed in formalin for 2 weeks inclined coronal, and midsagittal pl anes (fig. 1). Adequate ultrasonic and th en immersed in tap water. Care was taken to exclude air gel was appli ed between th e probe and skin for optimal acoustical bubbles from th e fi eld of view. Th e probe (Xerox 1505-4) was then coupling. No sedati on or anesth esia was necessary. Postprandial placed over th e temporal lobe and serial images were obtained in scanning or the use of a pacifier was adequate to obtain optimal th e hori zontal plane at 1 cm increments from the level of the lower im ages. All real-time sonograms were displayed on a vid eo screen cerebellum to th e high convexities of the cerebrum. For th e next and permanent records were made on Polaroid film and video tape. specimen, th e probe was pl aced in a position assumed to simu late th e anteri or fontanelle and seri al 1 c m images were obtained in the coronal plane. For the third specimen, th e transducer was placed Horizontal Plane in the position of th e anterior fontanell e and th e beam was directed toward the fourth ventricle giving a modified coronal im age (inclined Level of the Chiasmatic Cistern coronal plane). Fin all y, images were obtained with th e beam di­ The chiasmatic (suprasell ar) c istern is shown as a penta­ rected in the midsagittal plane. After the in vitro scanning was gonal, strongly echogenic structure in the center of the completed, the specimens were sectioned in the corresponding planes. image, with the similarly echogenic interhemispheric and Fifteen normal infants aged up to 15 months (average, 5 months) Sylvian fissures originating from the anterior and both lateral were also examined. Each had a normal CT study. The probe corners of the pentagon (fig. 2). Posteriorly, the circumme- AJNR:2. July / August 1981 INFANT CRANIAL ANATOMY 3 41 A B c Fi g. 3.-Hori zontal plane at level of cerebral pedunc les. A, In vitro. B, ventri cle; Int F = interhemispheric fi ssure. Choroid plexus of temporal horn Anatomic secti on. C, In vivo. AC = ambient cistern; Cer V = cerebell ar ( arro whead); aqueduc t ( arrow ). vermis; Cir S = circ ular sul cus; qc = quadri geminal cistern; 3 = third A B c Fi g . 4 .-Horizontal plane at level of thalami . A , In vitro. B, Anatomic Cir S = circ ul ar sulcus. Fornix ("); corpus call osum (long arrow) ; anterior sec ti on. C, In vivo. T = trigone; Tha = th alamus; vgc = ve in o f Galen c istern ; horn s ( short arrows ). sencephalic cisterns are continuous with the posterior cor­ can be seen to be pulsating within th e interpeduncul ar ners of the c isternal pentagon and outline a V-shaped ane­ c istern . choic structure, the mesencephalon. Pul sati ons are seen within the Sylvian, in te rhemispheri c , In the center of the pentagon, a low-amplitude-echo struc­ and circ ummesencephali c c istern s from th e middle cerebral , ture is constantly seen and represents the optic chiasm. anteri or cerebral, and circ ummesencephalic arteri es, re­ Th e relatively hypoechoic optic c hiasm appears to be di­ spectively. Posteri orl y, th e low amplitude echogeni c cere­ vided by a thin midline linear echogenic structure which can bellum is outlined by obliquely ori ented echoes representing be shown to be the anterior inferior part of third ventricle. th e leaves of th e tentorium . Th e frontal and temporal lobes Immediately ventral to th e mesencephalon, the basil ar artery are depi cted by low amplitude echoes. 34 2 PIGADAS ET AL. AJNR:2. July / August 1981 A B c Fig. 5. -Horizontal plane at level of lateral ventricles. A, In vitro. B, Anatomic secti on. C, In vivo. Lateral wall of lateral ventric les (paramedian echoes); fa lx cerebri (m idli ne echo). Level of the Cerebral Peduncles Level of Lateral Ventricles Th e anechoic V-shaped mesencephalon is in the center The midline, echogenic, interhemispheric fi ssure is seen of th e im age, with th e constantly seen single strong echo of accommodating the fal x cerebri (fig. 5). Parallel , paramedial, the aqueduct of Sylvius in the center of the tectum (fig. 3). linear echogenic structures are also seen which represent Posteriorl y, th e echogenic tentori al hi atus outlines the su­ th e lateral walls of the lateral ventric les. The inner tabl e of peri or vermis, which is separated from th e mesencephalon the parietal bone is sharpl y defined. Soft echoes interposed by th e quadrigeminal cistern . The lateral margins of the between th e falx cerebri and lateral wall of the lateral ven­ mesencephalon are outlined by th e ambient c istern s, whic h tricle represent combination echoes of the medial wall of th e are situated medial to th e parahippocampal gyri. The am­ lateral ventricle and of the parietal cortex. bi ent cistern s appear to join the c horoid pl exuses of the temporal horn s by their continuation with th e transverse Coronal Plane cerebral fi ssures.
Recommended publications
  • Multiple Osteomas of the Falx Cerebri and Anterior Skull Base: Case Report
    CASE REPORT J Neurosurg 124:1339–1342, 2016 Multiple osteomas of the falx cerebri and anterior skull base: case report Khaled M. Krisht, MD,1 Cheryl A. Palmer, MD,2 and William T. Couldwell, MD, PhD1 1Department of Neurosurgery, Clinical Neurosciences Center, and 2Department of Pathology, University of Utah, Salt Lake City, Utah The authors describe a rare case of intracranial extraaxial parafalcine and anterior skull base osteomas in a 22-year- old woman presenting with bifrontal headaches. This case highlights the possible occurrence of such lesions along the anterior skull base and parafalcine region that, as such, should be considered as part of the differential diagnosis for extraaxial calcific lesions involving the anterior skull base. To the authors’ knowledge, this is the first reported case of a patient who underwent complete successful resection of multiple extraaxial osteomas of the anterior skull base and parafalcine region. http://thejns.org/doi/abs/10.3171/2015.6.JNS15865 KEY WORDS osteoma; anterior skull base; parafalcine; falx cerebri; differential; CT; oncology STEOMAS are benign neoplasms consisting of ma- was first evaluated 6 years earlier, undergoing contrast- ture normal osseous tissue. They commonly arise enhancing MRI of the brain that disclosed a nonenhanc- from the long bones of the extremities. In the re- ing extraaxial T1-weighted isointense and T2-weighted Ogion of the head and neck, they are usually limited to the hypointense parafalcine lesion. At her latest presentation paranasal sinuses, facial bones, skull, and mandible.4,5,7 repeat brain MRI with and without contrast enhancement Their etiology is still a matter of debate.
    [Show full text]
  • The Diagnosis of Subarachnoid Haemorrhage
    Journal ofNeurology, Neurosurgery, and Psychiatry 1990;53:365-372 365 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.53.5.365 on 1 May 1990. Downloaded from OCCASIONAL REVIEW The diagnosis of subarachnoid haemorrhage M Vermeulen, J van Gijn Lumbar puncture (LP) has for a long time been of 55 patients with SAH who had LP, before the mainstay of diagnosis in patients who CT scanning and within 12 hours of the bleed. presented with symptoms or signs of subarach- Intracranial haematomas with brain shift was noid haemorrhage (SAH). At present, com- proven by operation or subsequent CT scan- puted tomography (CT) has replaced LP for ning in six of the seven patients, and it was this indication. In this review we shall outline suspected in the remaining patient who stop- the reasons for this change in diagnostic ped breathing at the end of the procedure.5 approach. In the first place, there are draw- Rebleeding may have occurred in some ofthese backs in starting with an LP. One of these is patients. that patients with SAH may harbour an We therefore agree with Hillman that it is intracerebral haematoma, even if they are fully advisable to perform a CT scan first in all conscious, and that withdrawal of cerebro- patients who present within 72 hours of a spinal fluid (CSF) may occasionally precipitate suspected SAH, even if this requires referral to brain shift and herniation. Another disadvan- another centre.4 tage of LP is the difficulty in distinguishing It could be argued that by first performing between a traumatic tap and true subarachnoid CT the diagnosis may be delayed and that this haemorrhage.
    [Show full text]
  • Anatomical Variations of Circle of Willis - a Cadaveric Study
    International Surgery Journal Singh R et al. Int Surg J. 2017 Apr;4(4):1249-1258 http://www.ijsurgery.com pISSN 2349-3305 | eISSN 2349-2902 DOI: http://dx.doi.org/10.18203/2349-2902.isj20171016 Original Research Article Anatomical variations of circle of Willis - a cadaveric study Ramanuj Singh, Ajay Babu Kannabathula*, Himadri Sunam, Debajani Deka Department of Anatomy, Gouri devi Institute of Medical Sciences and Hospital, Durgapur, West Bengal, India Received: 02 March 2017 Accepted: 09 March 2017 *Correspondence: Dr. Ajay Babu Kannabathula, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: The circle of Willis (CW) is a vascular network formed at the base of skull in the interpeduncular fossa. Its anterior part is formed by the anterior cerebral artery, from either side. Anterior communicating artery connects the right and left anterior cerebral arteries. Posteriorly, the basilar artery divides into right and left posterior cerebral arteries and each join to ipsilateral internal carotid artery through a posterior communicating artery. Anterior communicating artery and posterior communicating arteries are important component of circle of Willis, acts as collateral channel to stabilize blood flow. In the present study, anatomical variations in the circle of Willis were noted. Methods: 75 apparently normal formalin fixed brain specimens were collected from human cadavers. 55 Normal anatomical pattern and 20 variations of circle of Willis were studied.
    [Show full text]
  • Endoscopic Anatomical Study of the Arachnoid Architecture on the Base of the Skull
    DOI 10.1515/ins-2012-0005 Innovative Neurosurgery 2013; 1(1): 55–66 Original Research Article Peter Kurucz* , Gabor Baksa , Lajos Patonay and Nikolai J. Hopf Endoscopic anatomical study of the arachnoid architecture on the base of the skull. Part I: The anterior and middle cranial fossa Abstract: Minimally invasive neurosurgery requires a Introduction detailed knowledge of microstructures, such as the arach- noid membranes. In spite of many articles addressing The arachnoid was discovered and named by Gerardus arachnoid membranes, its detailed organization is still not Blasius in 1664 [ 22 ]. Key and Retzius were the first who well described. The aim of this study is to investigate the studied its detailed anatomy in 1875 [ 11 ]. This description was topography of the arachnoid in the anterior cranial fossa an anatomical one, without mentioning clinical aspects. The and the middle cranial fossa. Rigid endoscopes were intro- first clinically relevant study was provided by Liliequist in duced through defined keyhole craniotomies, to explore 1959 [ 13 ]. He described the radiological anatomy of the sub- the arachnoid structures in 110 fresh human cadavers. We arachnoid cisterns and mentioned a curtain-like membrane describe the topography and relationship to neurovascu- between the supra- and infratentorial cranial space bearing lar structures and suggest an intuitive terminology of the his name still today. Lang gave a similar description of the arachnoid. We demonstrate an “ arachnoid membrane sys- subarachnoid cisterns in 1973 [ 12 ]. With the introduction of tem ” , which consists of the outer arachnoid and 23 inner microtechniques in neurosurgery, the detailed knowledge arachnoid membranes in the anterior fossa and the middle of the surgical anatomy of the cisterns became more impor- fossa.
    [Show full text]
  • A Suprasellar Subarachnoid Pouch; Aetiological Considerations
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.47.10.1066 on 1 October 1984. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1984;47:1066-1074 A suprasellar subarachnoid pouch; aetiological considerations O BINITIE, BERNARD WILLIAMS, CP CASE From the Midland Centre for Neurosurgery and Neurology, Smethwick, Warley, West Midlands, UK SUMMARY A child with hydrocephalus treated by a valved shunt was reinvestigated after develop- ing a shunt infection. A pouch was discovered invaginating the floor of the third ventricle and filling slowly with CSF from the region of the interpeduncular cistern. Histology and mechanisms of this pouch formation are discussed. Arachnoid lined cysts in the subarachnoid space There was a family history of one sibling with spina form about one percent of space occupying intra- bifida and two normal siblings aged four and six cranial lesions in several series.'- These cysts may years. He was admitted to the Midland Centre for be separate from the normal subarachnoid space or Neurosurgery and Neurology (MCNN) at the age of may communicate with it. The term cyst" may be one and a half years because his head had been guest. Protected by copyright. applied to a fluid collection which has no macro- increasing in size over the previous six months. It scopic connection with other fluid containing space was also noted that his arms and legs were stiff, that and pouch" to a fluid collection with one entrance he did not attempt to crawl and his vocabulary was or exit.4 Cavities containing cerebrospinal fluid limited to basic words only.
    [Show full text]
  • Telovelar Approach to the Fourth Ventricle: Microsurgical Anatomy
    J Neurosurg 92:812–823, 2000 Telovelar approach to the fourth ventricle: microsurgical anatomy ANTONIO C. M. MUSSI, M.D., AND ALBERT L. RHOTON, JR., M.D. Department of Neurological Surgery, University of Florida, Gainesville, Florida Object. In the past, access to the fourth ventricle was obtained by splitting the vermis or removing part of the cere- bellum. The purpose of this study was to examine the access to the fourth ventricle achieved by opening the tela cho- roidea and inferior medullary velum, the two thin sheets of tissue that form the lower half of the roof of the fourth ven- tricle, without incising or removing part of the cerebellum. Methods. Fifty formalin-fixed specimens, in which the arteries were perfused with red silicone and the veins with blue silicone, provided the material for this study. The dissections were performed in a stepwise manner to simulate the exposure that can be obtained by retracting the cerebellar tonsils and opening the tela choroidea and inferior medullary velum. Conclusions. Gently displacing the tonsils laterally exposes both the tela choroidea and the inferior medullary velum. Opening the tela provides access to the floor and body of the ventricle from the aqueduct to the obex. The additional opening of the velum provides access to the superior half of the roof of the ventricle, the fastigium, and the superolater- al recess. Elevating the tonsillar surface away from the posterolateral medulla exposes the tela, which covers the later- al recess, and opening this tela exposes the structure forming
    [Show full text]
  • Arachnoid Cyst of the Velum Interpositum
    981 t . Arachnoid Cyst of the Velum Interpositum S. M. Spiegel,1 B. Nixon,2 K. TerBrugge,1 M. C. Chiu,1 and H. Schutz2 Arachnoid cysts are thin-walled fluid-filled cavities that are The lesion was assumed to be an arachnoid cyst and surgery was uncommon causes of intracranial mass lesions [1 , 2]. These planned for decompression. By way of a right parietal craniotomy, an lesions have been found in various locations, both supraten­ interhemispheric transcallosal approach was used to expose the cyst. torial and infratentorial [1 , 3-7]. This report describes a case After the cyst was punctured, the roof was removed and tissue was submitted for pathologic study. The fluid within the cyst proved to be in which the arachnoid cyst arose from the tela choroidea and identical to CSF. The cyst was then marsupialized to the third occupied the cistern of the velum interpositum. The cyst ventricle. caused symptoms similar to those seen with a third ventricular The sample received for pathologic study consisted of a moder­ mass [8, 9] . To our knowledge, this is the first report of an ately cellular, collagenous tissue with a small amount of brain paren­ arachnoid cyst in this location. chyma. The lining of the tissue consisted of flattened cells. The appearance was typical of the wall of an arachnoid cyst. After surgery, the patient had no further episodes of loss of Case Report consciousness or headache. A 43-year-old woman was admitted to the hospital because of two episodes of sudden loss of consciousness within a period of a few months.
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]
  • Subarachnoid Trabeculae: a Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M
    Literature Review Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M. Mortazavi1,2, Syed A. Quadri1,2, Muhammad A. Khan1,2, Aaron Gustin3, Sajid S. Suriya1,2, Tania Hassanzadeh4, Kian M. Fahimdanesh5, Farzad H. Adl1,2, Salman A. Fard1,2, M. Asif Taqi1,2, Ian Armstrong1,2, Bryn A. Martin1,6, R. Shane Tubbs1,7 Key words - INTRODUCTION: Brain is suspended in cerebrospinal fluid (CSF)-filled sub- - Arachnoid matter arachnoid space by subarachnoid trabeculae (SAT), which are collagen- - Liliequist membrane - Microsurgical procedures reinforced columns stretching between the arachnoid and pia maters. Much - Subarachnoid trabeculae neuroanatomic research has been focused on the subarachnoid cisterns and - Subarachnoid trabecular membrane arachnoid matter but reported data on the SAT are limited. This study provides a - Trabecular cisterns comprehensive review of subarachnoid trabeculae, including their embryology, Abbreviations and Acronyms histology, morphologic variations, and surgical significance. CSDH: Chronic subdural hematoma - CSF: Cerebrospinal fluid METHODS: A literature search was conducted with no date restrictions in DBC: Dural border cell PubMed, Medline, EMBASE, Wiley Online Library, Cochrane, and Research Gate. DL: Diencephalic leaf Terms for the search included but were not limited to subarachnoid trabeculae, GAG: Glycosaminoglycan subarachnoid trabecular membrane, arachnoid mater, subarachnoid trabeculae LM: Liliequist membrane ML: Mesencephalic leaf embryology, subarachnoid trabeculae histology, and morphology. Articles with a PAC: Pia-arachnoid complex high likelihood of bias, any study published in nonpopular journals (not indexed PPAS: Potential pia-arachnoid space in PubMed or MEDLINE), and studies with conflicting data were excluded. SAH: Subarachnoid hemorrhage SAS: Subarachnoid space - RESULTS: A total of 1113 articles were retrieved.
    [Show full text]
  • The Choroid Plexus: a Comprehensive Review of Its History, Anatomy, Function, Histology, Embryology, and Surgical Considerations
    Childs Nerv Syst (2014) 30:205–214 DOI 10.1007/s00381-013-2326-y REVIEW PAPER The choroid plexus: a comprehensive review of its history, anatomy, function, histology, embryology, and surgical considerations Martin M. Mortazavi & Christoph J. Griessenauer & Nimer Adeeb & Aman Deep & Reza Bavarsad Shahripour & Marios Loukas & Richard Isaiah Tubbs & R. Shane Tubbs Received: 30 September 2013 /Accepted: 11 November 2013 /Published online: 28 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Keywords Choroid plexus . Anatomy . Neurosurgery . Introduction The role of the choroid plexus in cerebrospinal Hydrocephalus fluid production has been identified for more than a century. Over the years, more intensive studies of this structure has lead to a better understanding of the functions, including brain Introduction immunity, protection, absorption, and many others. Here, we review the macro- and microanatomical structure of the Around the walls of the ventricles, folds of pia mater form choroid plexus in addition to its function and embryology. vascularized layers named choroid plexus. This vasculature Method The literature was searched for articles and textbooks along with the overlying ependymal lining of the ventricles for data related to the history, anatomy, physiology, histology, forms the tela choroidea. Sometimes, however, the term embryology, potential functions, and surgical implications of choroid plexus is used to describe the entire structure [1]. The the choroid plexus. All were gathered and summarized narrow cleft, to which the choroids plexus is attached in the comprehensively. ventricles, is defined as the choroidal fissure. [2] The discovery Conclusion We summarize the literature regarding the choroid of the choroid plexus is attributed to Herophilus, who named it plexus and its surgical implications.
    [Show full text]
  • The Surgical Treatment of Tumors of the Fourth Ventricle: a Single-Institution Experience
    CLINICAL ARTICLE J Neurosurg 128:339–351, 2018 The surgical treatment of tumors of the fourth ventricle: a single-institution experience Sherise D. Ferguson, MD, Nicholas B. Levine, MD, Dima Suki, PhD, Andrew J. Tsung, MD, Fredrick F. Lang, MD, Raymond Sawaya, MD, Jeffrey S. Weinberg, MD, and Ian E. McCutcheon, MD, FRCS(C) Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas OBJECTIVE Fourth ventricle tumors are rare, and surgical series are typically small, comprising a single pathology, or focused exclusively on pediatric populations. This study investigated surgical outcome and complications following fourth ventricle tumor resection in a diverse patient population. This is the largest cohort of fourth ventricle tumors described in the literature to date. METHODS This is an 18-year (1993–2010) retrospective review of 55 cases involving patients undergoing surgery for tumors of the fourth ventricle. Data included patient demographic characteristics, pathological and radiographic tumor characteristics, and surgical factors (approach, surgical adjuncts, extent of resection, etc.). The neurological and medical complications following resection were collected and outcomes at 30 days, 90 days, 6 months, and 1 year were reviewed to determine patient recovery. Patient, tumor, and surgical factors were analyzed to determine factors associated with the frequently encountered postoperative neurological complications. RESULTS There were no postoperative deaths. Gross-total resection was achieved in 75% of cases. Forty-five percent of patients experienced at least 1 major neurological complication, while 31% had minor complications only. New or worsening gait/focal motor disturbance (56%), speech/swallowing deficits (38%), and cranial nerve deficits (31%) were the most common neurological deficits in the immediate postoperative period.
    [Show full text]
  • Human and Nonhuman Primate Meninges Harbor Lymphatic Vessels
    SHORT REPORT Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI Martina Absinta1†, Seung-Kwon Ha1†, Govind Nair1, Pascal Sati1, Nicholas J Luciano1, Maryknoll Palisoc2, Antoine Louveau3, Kareem A Zaghloul4, Stefania Pittaluga2, Jonathan Kipnis3, Daniel S Reich1* 1Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States; 2Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, United States; 3Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, United States; 4Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States Abstract Here, we report the existence of meningeal lymphatic vessels in human and nonhuman primates (common marmoset monkeys) and the feasibility of noninvasively imaging and mapping them in vivo with high-resolution, clinical MRI. On T2-FLAIR and T1-weighted black-blood imaging, lymphatic vessels enhance with gadobutrol, a gadolinium-based contrast agent with high propensity to extravasate across a permeable capillary endothelial barrier, but not with gadofosveset, a blood-pool contrast agent. The topography of these vessels, running alongside dural venous sinuses, recapitulates the meningeal lymphatic system of rodents. In primates, *For correspondence: meningeal
    [Show full text]