MOCVD, CVD & ALD Precursors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
540.14Pri.Pdf
Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs. -
Pyrophoric Materials
Appendix A PYROPHORIC MATERIALS Pyrophoric materials react with air, or with moisture in air. Typical reactions which occur are oxidation and hydrolysis, and the heat generated by the reactions may ignite the chemical. In some cases, these reactions liberate flammable gases which makes ignition a certainty and explosion a real possibility. Examples of pyrophoric materials are shown below. (List may not be complete) (a) Pyrophoric alkyl metals and derivatives Groups Dodecacarbonyltetracobalt Silver sulphide Dialkytzincs Dodecacarbonyltriiron Sodium disulphide Diplumbanes Hexacarbonylchromium Sodium polysulphide Trialkylaluminiums Hexacarbonylmolybdenum Sodium sulphide Trialkylbismuths Hexacarbonyltungsten Tin (II) sulphide Nonacarbonyldiiron Tin (IV) sulphide Compounds Octacarbonyldicobalt Titanium (IV) sulphide Bis-dimethylstibinyl oxide Pentacarbonyliron Uranium (IV) sulphide Bis(dimethylthallium) acetylide Tetracarbonylnickel Butyllithium (e) Pyrophoric alkyl non-metals Diethylberyllium (c) Pyrophoric metals (finely divided state) Bis-(dibutylborino) acetylene Bis-dimethylarsinyl oxide Diethylcadmium Caesium Rubidium Bis-dimethylarsinyl sulphide Diethylmagnesium Calcium Sodium Bis-trimethylsilyl oxide Diethylzinc Cerium Tantalum Dibutyl-3-methyl-3-buten-1-Yniborane Diisopropylberyllium Chromium Thorium Diethoxydimethylsilane Dimethylberyllium Cobalt Titanium Diethylmethylphosphine Dimethylbismuth chloride Hafnium Uranium Ethyldimthylphosphine Dimethylcadmium Iridium Zirconium Tetraethyldiarsine Dimethylmagnesium Iron Tetramethyldiarsine -
Speciation of Volatile Arsenic at Geothermal Features in Yellowstone National Park
Geochimica et Cosmochimica Acta 70 (2006) 2480–2491 www.elsevier.com/locate/gca Speciation of volatile arsenic at geothermal features in Yellowstone National Park Britta Planer-Friedrich a,*, Corinne Lehr b,c,Jo¨rg Matschullat d, Broder J. Merkel a, Darrell Kirk Nordstrom e, Mark W. Sandstrom f a Technische Universita¨t Bergakademie Freiberg, Department of Geology, 09599 Freiberg, Germany b Montana State University, Thermal Biology Institute Bozeman, MT 59717, USA c California Polytechnic State University, Department of Chemistry and Biochemistry, San Luis Obispo, CA 93407, USA d Technische Universita¨t Bergakademie Freiberg, Department of Mineralogy, 09599 Freiberg, Germany e US Geological Survey, 3215 Marine St, Boulder, CO 80303, USA f US Geological Survey, National Water Quality Laboratory, Denver, CO 80225-004, USA Received 2 September 2005; accepted in revised form 7 February 2006 Abstract Geothermal features in the Yellowstone National Park contain up to several milligram per liter of aqueous arsenic. Part of this arsenic is volatilized and released into the atmosphere. Total volatile arsenic concentrations of 0.5–200 mg/m3 at the surface of the hot springs were found to exceed the previously assumed nanogram per cubic meter range of background concentrations by orders of magnitude. Speciation of the volatile arsenic was performed using solid-phase micro-extraction fibers with analysis by GC–MS. The arsenic species most frequently identified in the samples is (CH3)2AsCl, followed by (CH3)3As, (CH3)2AsSCH3, and CH3AsCl2 in decreasing order of frequency. This report contains the first documented occurrence of chloro- and thioarsines in a natural environment. Toxicity, mobility, and degradation products are unknown. -
Download The
COORDINATION COMPOUNDS OF ALKYL GALLIUM HYDRIDES by VICTOR GRAHAM WIEBE B.Sc. (Hons.) University of British Columbia 1966 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In The Department of Chemistry We accept this thesis as conforming to the required standard The University of British Columbia June 1968 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and Study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by hits representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada - ii - Abstract Although the organo hydride derivatives of boron and aluminum are well characterized^little work has been reported on the corresponding gallium systems. The present study was initiated to determine the relative stabilities and reactivity of organo gallium hydride derivatives as compared with the stabilities and reactions of the corresponding compounds of boron and aluminum. Various preparative routes to this new class of gallium compounds have been investigated. These include the use of organo-mercury, organo-lithium and lithium hydride derivatives in reactions with gallium hydride and gallium alkyl compounds and their halogen substituted derivatives: Me3NGaH3 + HgR2 >- Me3NGaH2R + l/2Hg + 1/2H2 Me3NGaH2Cl + LiR y Me3NGaH2R + LiCl Me3NGaR2Cl + LiH • Me3NGaHR2 + LiCl A fourth preparative method involves disproportionation reactions between gallium hydride compounds and organo gallium compounds to yield the mixed organo hydride derivatives. -
Phenasen®, Arsenic Trioxide, 10Mg in 10Ml, Injection
Phenasen®, Arsenic Trioxide, 10mg In 10ml, Injection Phebra Pty Ltd Chemwatch Hazard Alert Code: 4 Chemwatch: 23-0970 Issue Date: 10/07/2017 Version No: 6.1.1.1 Print Date: 02/03/2018 Safety Data Sheet according to WHS and ADG requirements S.GHS.AUS.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING Product Identifier Product name Phenasen®, Arsenic Trioxide, 10mg In 10ml, Injection Synonyms Not Available Other means of identification Not Available Relevant identified uses of the substance or mixture and uses advised against Phenasen injection is for the treatment of acute promyelocytic leukaemia where treatment with all-trans retinoic acid and anthracycline chemotherapy has Relevant identified uses failed or where the patient has relapsed. Details of the supplier of the safety data sheet Registered company name Phebra Address 19 Orion Road Lane Cove West NSW 2066 Australia Telephone +61 2 9420 9199|1800 720 020 Fax +61 2 9420 9177 Website www.phebra.com Email [email protected] Emergency telephone number Association / Organisation Not Available Emergency telephone numbers +61 401 264 004 Other emergency telephone N/A numbers SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture Poisons Schedule S4 Classification [1] Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4, Carcinogenicity Category 1A Legend: 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI Label elements Hazard pictogram(s) SIGNAL WORD DANGER Hazard statement(s) H302 Harmful if swallowed. H332 Harmful if inhaled. H350 May cause cancer. Precautionary statement(s) Prevention P201 Obtain special instructions before use. -
Cacodylic Acid), in F344/Ducrj Rats After Pretreatment with Five Carcinogens1
[CANCER RESEARCH 55, 1271-1276, March 15, 1995] Cancer Induction by an Organic Arsenic Compound, Dimethylarsinic Acid (Cacodylic Acid), in F344/DuCrj Rats after Pretreatment with Five Carcinogens1 Shinji Vaniamolo,2 Yoshitsugu Konishi, Tsutomu Matsuda, Takashi Murai, Masa-Aki Shibata, Isao Matsui-Yuasa,3 Shuzo Otani, Koichi Kuroda, Ginji Endo, and Shoji Fukushima First Department of Pathology ¡S. Y., Ts. M., Ta. M.. M-A. S.. S. F.1, Second Department of Biochemistry //. M-Y., S. O.j, and Department of Preventive Medicine and Environmental Health /K K., G. E.I, Osaka City University Medical School, 1-4-54 Asahi-machi, Aheno-ku, Osaka 545, and Osaka Cit\ Institute of Public Health and Environmental Sciences, Osaka 543 IK. K.], Japan ABSTRACT Taiwan and Mexico are exposed to high amounts of As via the drinking water (5, 8). Moreover, the wide population in the United Arsenic (As) is environmentally ubiquitous and an epidemiologically States may be supplied with water containing more than 50 ju.g/1As significant chemical related to certain human cancers. Dimethylarsinic (6). Industrial arsenicals are used for smelting, glass making, and the acid (cacodylic acid; DMA) is one of the major methylated metabolites of manufacture of semiconductors (3, 9). For more than half a century, ingested arsenicals in most mammals. To evaluate the effects of DMA on chemical carcinogenesis, we conducted a multiorgan bioassay in rats given various carcinogenic effects of As for humans have been documented, various doses of DMA. One-hundred twenty-four male F344/DuCrj rats mainly involving the skin and lung (7). In addition, recent epidemi- were divided randomly into 7 groups (20 rats each for groups 1-5; 12 rats ological studies have indicated that there are significant dose-response each for groups 6 and 7). -
Alfa Laval Black and Grey List, Rev 14.Pdf 2021-02-17 1678 Kb
Alfa Laval Group Black and Grey List M-0710-075E (Revision 14) Black and Grey list – Chemical substances which are subject to restrictions First edition date. 2007-10-29 Revision date 2021-02-10 1. Introduction The Alfa Laval Black and Grey List is divided into three different categories: Banned, Restricted and Substances of Concern. It provides information about restrictions on the use of Chemical substances in Alfa Laval Group’s production processes, materials and parts of our products as well as packaging. Unless stated otherwise, the restrictions on a substance in this list affect the use of the substance in pure form, mixtures and purchased articles. - Banned substances are substances which are prohibited1. - Restricted substances are prohibited in certain applications relevant to the Alfa Laval group. A restricted substance may be used if the application is unmistakably outside the scope of the legislation in question. - Substances of Concern are substances of which the use shall be monitored. This includes substances currently being evaluated for regulations applicable to the Banned or Restricted categories, or substances with legal demands for monitoring. Product owners shall be aware of the risks associated with the continued use of a Substance of Concern. 2. Legislation in the Black and Grey List Alfa Laval Group’s Black and Grey list is based on EU legislations and global agreements. The black and grey list does not correspond to national laws. For more information about chemical regulation please visit: • REACH Candidate list, Substances of Very High Concern (SVHC) • REACH Authorisation list, SVHCs subject to authorization • Protocol on persistent organic pollutants (POPs) o Aarhus protocol o Stockholm convention • Euratom • IMO adopted 2015 GUIDELINES FOR THE DEVELOPMENT OF THE INVENTORY OF HAZARDOUS MATERIALS” (MEPC 269 (68)) • The Hong Kong Convention • Conflict minerals: Dodd-Frank Act 1 Prohibited to use, or put on the market, regardless of application. -
Guidelines for Pyrophoric Materials
Guidelines for Pyrophoric Materials Definition and Hazards Pyrophoric materials are substances that ignite instantly upon exposure to air, moisture in the air, oxygen or water. Other common hazards include corrosivity, teratogenicity, and organic peroxide formation, along with damage to the liver, kidneys, and central nervous system. Examples include metal hydrides, finely divided metal powders, nonmetal hydride and alkyl compounds, white phosphorus, alloys of reactive materials and organometallic compounds, including alkylithiums. Additional pyrophoric materials are listed in Appendix A. Failure to follow proper handling techniques could result in serious injury or death. Controlling the Hazards . If possible, use safer chemical alternatives. A “dry run” of the experiment should be performed using low-hazard materials, such as water or solvent, as appropriate. Limit the amount purchased and the amount stored. Do not accumulate unneeded pyrophoric materials. BEFORE working with pyrophoric materials, read the MSDS sheets. The MSDS must be reviewed before using an unfamiliar chemical and periodically as a reminder. A Standard Operating Procedure (SOP) should be prepared and reviewed for each process involving pyrophoric materials. In lab training should be completed and documented. If possible, use the “buddy system”. Working alone with pyrophorics is strongly discouraged. All glassware used for pyrophorics should be oven-dried and free of moisture. Review the location of the safety shower, eyewash, telephone, and fire extinguisher. Keep an appropriate fire extinguisher or extinguishing material close at hand. Additional controls when handling liquid pyrophoric materials . Secure pyrophoric reagent bottle to stand. Secure the syringe so if the plunger blows out of the body of the syringe the contents will not splash anyone. -
Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) --------------------------- -
A Review on Completing Arsenic Biogeochemical Cycle: Microbial Volatilization of Arsines in Environment
Journal of Environmental Sciences 26 (2014) 371–381 Available online at www.sciencedirect.com Journal of Environmental Sciences www.jesc.ac.cn A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment Peipei Wang1, Guoxin Sun1, Yan Jia1, Andrew A Meharg2, Yongguan Zhu1,3,∗ 1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK 3. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China article info abstract Article history: Arsenic (As) is ubiquitous in the environment in the carcinogenic inorganic forms, posing risks to Received 06 March 2013 human health in many parts of the world. Many microorganisms have evolved a series of mechanisms revised 23 May 2013 to cope with inorganic arsenic in their growth media such as transforming As compounds into accepted 08 August 2013 volatile derivatives. Bio-volatilization of As has been suggested to play an important role in global As biogeochemical cycling, and can also be explored as a potential method for arsenic bioremediation. Keywords: This review aims to provide an overview of the quality and quantity of As volatilization by fungi, arsenic bacteria, microalga and protozoans. Arsenic bio-volatilization is influenced by both biotic and abiotic methylation factors that can be manipulated/elucidated for the purpose of As bioremediation. Since As bio- microorganism volatilization is a resurgent topic for both biogeochemistry and environmental health, our review volatilization serves as a concept paper for future research directions. -
Synthetic, Kinetic and Electrochemical Studies on New Osmocene-Containing Betadiketonato Rhodium(I) Complexes with Biomedical Applications
Synthetic, kinetic and electrochemical studies on new osmocene-containing betadiketonato rhodium(I) complexes with biomedical applications. A dissertation submitted in accordance with the requirements for the degree Magister Scientiae In the Department of Chemistry Faculty of Science At the University of the Free State By Zeldene Salomy Ambrose Supervisor Prof. J.C. Swarts June 2006 Acknowledgements To God all the praise, for He has carried me through it all. He gave me strength to carry on, dried my tears when all fell apart and never let me fall to hard. I would like to thank my promoter, Prof. J.C. Swarts for all the guidance and time spent on this project. Also for all the words of wisdom that has stayed in my heart. I would also like to thank the Department Chemistry for laying the basic structure in my pre-graduate studies. To all the lectures and Professors, from Organic to Physical chemistry, thank you for making a difference in my life. To my mother and family, thank you for making me laugh when I wanted to cry. God could not have given me a better family. I wish Dad was here, but I know he is very proud of me. To all my crazy friends, words can not describe how much you mean to me. You guys cried with me, laughed with me and partied with me. You were my Dr. Phil, Oprah and Jerry Springer all in one. Aurelien Auger (bite me), Johan Barnard, Nicola Barnard (ZNN), Nicoline Cloete (sweetie-pie), Micheal Coetzee, Eleanor Fourie (E), Phillip Fullaway (Dr. -
The Preparation of Organomagnesium Fluorides
THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS AND THE COMPOSITION IN SOLUTION OF ALKOXY(METHYL)MAGNESIUM AND DIALKYLAMINO(METHYL)MAGNESIUM COMPOUNDS A THESIS Presented To The Faculty of the Graduate Division by John A. Nackashi In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the School of Chemistry Georgia Institute of Technology May, 1974 THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS AND THE COMPOSITION IN SOLUTION OF ALKOXY(METHYL)MAGNESIUM AND DIALKYLAMINO(METHYL)MAGNESIUM COMPOUNDS Approved: E. C. Ashby, Chairman A. Bertrand C. L. Liotta Date approved by Chairman: ii ACKNOWLEDGMENTS The author is grateful to Dr. E. C. Ashby for his guidance, direction and patience during this research. The reading of this thesis by Dr. A. Bertrand and Dr. C. Liotta is greatly appreciated. The author is also indebted to John P. Oliver for his assistance and friendship, and to the mem bers of the research group who made the successes of this research a joy and the failures acceptable. The warm friend ship expressed by the research group will always be cherished. Financial assistance by the Georgia Institute of Tech nology and the National Science Foundation is gratefully ack nowledged. The author acknowledges a special appreciation to his parents and particularly his wife, Bryan. Their gentle en couragement and patient understanding throughout the entire period of study has made this thesis possible. iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii LIST OF TABLES vi LIST OF ASSOCIATION PLOTS iii LIST OF SPECTRA ix SUMMARY x PART I THE PREPARATION OF ORGANOMAGNESIUM FLUORIDES BY ORGANOMETALLIC EXCHANGE REACTIONS CHAPTER I.