ARTIFICIAL INTELLIGENCE, ROBOTICS and AUTOMATION the BEST OR the WORST THING EVER to HAPPEN to HUMANITY? Contents

Total Page:16

File Type:pdf, Size:1020Kb

ARTIFICIAL INTELLIGENCE, ROBOTICS and AUTOMATION the BEST OR the WORST THING EVER to HAPPEN to HUMANITY? Contents ARTIFICIAL INTELLIGENCE, ROBOTICS AND AUTOMATION THE BEST OR THE WORST THING EVER TO HAPPEN TO HUMANITY? Contents 1 THE EDGE OF THE PRECIPICE ................................................................. 03 2 WHAT IS AI, RPA AND ROBOTICS? ......................................................... 04 3 TIME FOR A CONTRACT REFRESH.......................................................... 05 02 | Artificial Intelligence, Robotics and Automation THE EDGE OF THE PRECIPICE As Professor Stephen Hawking said[1], we do not yet fully understand and cannot predict the true impact of AI, and yet the race to business and operational transformation via the implementation of digital technologies, such as artificial intelligence (AI) and robotic process automation (RPA), is on an inexorable rise. And whilst there may be some debate as to the socio-economic impact of the rise of the machines and whether they will in time decimate the human race in a form of science fiction disaster movie, for the time being their use is slightly more prosaic. There is no doubt that AI and RPA are here to stay, and businesses, academic institutions and governments are being encouraged to develop their intelligence further, and so it is essential to look to the intelligent future and work to both facilitate innovation, allowing businesses to embrace technology and at the same time mitigate any associated risks. We examine some of the business opportunities and challenges faced, as well as providing our insight on how to manage these issues both in strategic sourcing programmes and in transformative, technology-enabled projects. [1] http://www.cam.ac.uk/research/news/the-best-or-worst-thing-to-happen-to-humanity-stephen-hawking-launches-centre-for-the-future-of www.dlapiper.com | 03 WHAT IS AI, RPA AND ROBOTICS? There is much talk of AI, robotics and RPA, almost on an interchangeable basis. In this paper, these terms are defined as having the following meanings: Artificial Intelligence – technically a field of computer Neural networks – an example of machine science and a phrase coined by John McCarthy in the late learning; a neural network is a connected 1950s, AI is the simulation of human intelligence by machines, network of many simple processors, modelled often sub-divided into ‘strong’ and ‘weak’ AI (strong or hard AI on the human brain. is true human mimicry, often the focus of Hollywood, whereas weak or soft AI is more often focussed on a narrow task). Deep learning – a form of machine learning concerned with the human brain’s function and Machine learning – is the Robotic process structure. ability of a machine to automation (RPA) – improve its performance the use of software to Heuristics – a ‘rule of thumb’, more akin to in the future by analysing perform repeatable or gut feeling (as opposed to algorithms which will previous results. Machine clerical operations, previously guarantee an outcome), used in AI to problem learning is an application performed by a human. solve quickly. of AI. One thing it is important to note is that, in spite of the hype surrounding RPA, it won’t do much by itself “out of the box”. It needs to be taught and it will continue to learn before and after deployment, as indicated in the diagram below. This means that the use of RPA comes with an investment cost and a time requirement that is important to bear in mind when seeking to understand when the issues set out here are likely to manifest. It also goes some way to underlining that the use of RPA requires a relatively long-term investment in order to obtain and maintain the full potential benefits. Training phase “Does this scan indicate cancerous growth?” Training with Testing on Results of testing Testing on ntton no t initial data new data fed into system new data Accuracy 50% 63% 74% Level: Human trained via medical school, on-the-job experience Live use phase after 10+ years of practice has seen several thousand scans Machine combines results from potentially hundreds of thousands of scans, including input from Patient presents CT scan carried out edge cases from the best with symptoms diagnosticians 04 | Artificial Intelligence, Robotics and Automation TIME FOR A CONTRACT REFRESH The potential benefits of implementing AI or RPA within and management of the solution will enable these errors a business can be significant and even transformative for to be recognised, unless the RPA itself can recognise its the commercial well-being of that company – so long as it own errors. is set up to succeed. The use of AI and RPA, particularly in outsourcing deals, can give rise to a number of novel CONFIDENTIALITY AND IP and differently nuanced issues that, if not addressed at the outset, could create some significant issues for the future. Software has been writing software without human intervention for some time. Who owns the resulting new code? Similarly, valuable, derived data from huge raw data SERVICE LEVELS AND FAILURE sets may be sold in much the same way as market data. Broadly speaking, current service level models are Likewise, who owns a new derived data set which has devised to incentivise suppliers to avoid ‘low grade’ issues been created by the machine? that might arise if staff do not follow proper processes. Clearly, any applicable agreement will need to include This is because human beings are by definition fallible terms that deal with the relevant issues. The key here and will be more or less efficient depending upon a large is understanding the likely different outputs that might number of factors. be created as a consequence of the deployment of the This is not the case with AI-based services, which do not AI or RPA technology. It will be important to rethink (or should not) suffer from the same challenges as those the provisions insofar as they relate to matters such as that will likely give rise to human error. Accordingly, configurations, outputs that reflect or are a manifestation of it is not unreasonable to expect improved service levels business rules, and templates generated by the AI or RPA. for processes supported by RPA and in fact, this will There are two particular issues that may require different often be perceived to be one of the key reasons for the treatment – background IP and know-how provisions. implementation of RPA. It is not unusual for customers to agree that The flip side is that if RPA failures occur, there is a far modifications or enhancements to the supplier’s greater risk that the incidents will be catastrophic rather background IP are owned by the supplier (often on the than minor. This is because AI-based systems tend to basis that they are worthless without the underlying work at a demonstrable accuracy level or will, if this product). However, in AI or RPA deployments, this accuracy level cannot be achieved, fail in a significant way category of IP can instead have its own intrinsic value far below the relevant standard. It is far less likely that that the customer ought to consider before letting such systems will degrade by small margins as human- go, because, for example, if used by the supplier or a provided services might. When a defect or error occurs third party it would allow that entity to replicate the its likelihood of repetition and going unseen is increased customer’s business practices (potentially even more beyond that of a human error, as it will likely have been efficiently than the customer) or because it is something “programmed” within the RPA solution and accordingly that the customer will continue to need to own because will become part of the norm. Only continued oversight of the value to the company itself. www.dlapiper.com | 05 Similarly, most customers will agree a know-how clause, HR, REDUNDANCIES AND KNOWLEDGE permitting the supplier to use the knowledge gained TRANSFER by the supplier in the course of providing the services. Those implementing AI and RPA clearly need to understand But this ought to be reconsidered on the basis that it the HR consequences. Transformational programmes will might aquire knowledge, not of humans, but of machines need to address process risks such as collective consultation and software opening up the possibility for the supplier requirements, where failure could potentially delay progress to re-use material and knowledge that the customer or give rise to significant financial penalties. Equally, believes to have been protected. potential redundancies will undoubtedly be a sensitive issue, as well as potentially triggering severance payments. AUDIT AND TECHNOLOGY Newly created roles on the back of change may give rise to Customers often ask for audit rights – especially in redeployment and retraining obligations for those displaced. particular sectors such as financial services where a Both remuneration design and representation structures regulated entity is required to ensure appropriate audit will potentially be impacted and come into play. rights and may incur substantial sanctions from its A particular challenge will be understanding the impact regulators if it cannot audit and monitor the work of its of AI and RPA on the workforce sufficiently to identify service providers. legal obligations and not fall foul of timing issues by failing Such monitoring is easier within the traditional sourcing to comply with any obligations in the required timescales, environment, when a supplier can be audited mainly for example collective consultation processes or filing through a review of documents, reports and procedures. notification of redundancies with competent authorities. Any work done by a human can be checked by another Another difficulty where there is a proposed outsourcing human relatively easily. In the new context of AI and and transformation will be understanding whether or not RPA, it is more difficult to work out how the AI system automatic transfer rules apply such as those under is working (and evolves) through the service.
Recommended publications
  • How to Start a Robotics Company REPORT
    REPORT How to Start a Robotics Company TABLE OF CONTENTS FIRST, IDENTIFY A MARKET NEXT, BUILD A TEAM CRACKING THE VC CODE UP AND RUNNING FINAL WORDS OF ADVICE WHY ARE ROBOTICS COMPANIES DYING? roboticsbusinessreview.com 2 HOW TO START A ROBOTICS COMPANY Building robots are hard; building robot companies are even harder. Here are some tips and advice from those who’ve done it. By Neal Weinberg By all measures, there’s never been a better time to start a robotics About the author: company. Worldwide spending on robotics systems and drones will total $115.7 Neal Weinberg billion in 2019, an increase of 17.6% over 2018, according to IDC. By 2022, is a freelance IDC expects robotics-related spending to reach $210.3 billion, with a technology writer and editor, with compound annual growth rate of 20.2%. experience as Venture capital is flowing like it’s 1999 all over again. According to the a technology PwC/CB Insight MoneyTree Report for 2018, VC funding in the U.S. jumped business writer to $99.5 billion, the highest yearly funding level since the dotcom boom. for daily news- In the category of AI-related companies, which includes robotics, startups papers, and as a writer and editor raised $9.3 billion in 2018, a 72% increase compared to 2017. Nuro, a for technology Silicon Valley startup that is piloting a driverless delivery robot vehicle, publications such announced in February that it successfully raised an astounding $940 as Computer- million from SoftBank. world and Net- Stocks in robotics and AI are hot commodities.
    [Show full text]
  • Claytronics - a Synthetic Reality D.Abhishekh, B.Ramakantha Reddy, Y.Vijaya Kumar, A.Basi Reddy
    International Journal of Scientific & Engineering Research, Volume 4, Issue 3, March‐2013 ISSN 2229‐5518 Claytronics - A Synthetic Reality D.Abhishekh, B.Ramakantha Reddy, Y.Vijaya Kumar, A.Basi Reddy, Abstract— "Claytronics" is an emerging field of electronics concerning reconfigurable nanoscale robots ('claytronic atoms', or catoms) designed to form much larger scale machines or mechanisms. Also known as "programmable matter", the catoms will be sub-millimeter computers that will eventually have the ability to move around, communicate with each others, change color, and electrostatically connect to other catoms to form different shapes. Claytronics technology is currently being researched by Professor Seth Goldstein and Professor Todd C. Mowry at Carnegie Mellon University, which is where the term was coined. According to Carnegie Mellon's Synthetic Reality Project personnel, claytronics are described as "An ensemble of material that contains sufficient local computation, actuation, storage, energy, sensing, and communication" which can be programmed to form interesting dynamic shapes and configurations. Index Terms— programmable matter, nanoscale robots, catoms, atoms, electrostatically, LED, LATCH —————————— —————————— 1 INTRODUCTION magine the concept of "programmable matter" -- micro- or which are ringed by several electromagnets are able to move I nano-scale devices which can combine to form the shapes of around each other to form a variety of shapes. Containing ru- physical objects, reassembling themselves as we needed. An dimentary processors and drawing electricity from a board that ensemble of material called catoms that contains sufficient local they rest upon. So far only four catoms have been operated to- computation, actuation, storage, energy, sensing & communica- gether. The plan though is to have thousands of them moving tion which can be programmed to form interesting dynamic around each other to form whatever shape is desired and to shapes and configurations.
    [Show full text]
  • Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control Applied to Nanomedicine
    IEEE Transactions on Nanotechnology, Vol. 2, no. 2, June 2003 82 Assembly Automation with Evolutionary Nanorobots and Sensor-Based Control applied to Nanomedicine Adriano Cavalcanti, Member, IEEE Germany only the Federal Ministry of Education and Research Abstract—The author presents a new approach within has announced 50 million Euros to be invested in the years advanced graphics simulations for the problem of nano-assembly 2002-2006 in research and development on nanotechnology automation and its application for medicine. The problem under [21]. More specifically the firm DisplaySearch predicts rapid study concentrates its main focus on nanorobot control design for assembly manipulation and the use of evolutionary competitive market growth from US$ 84 million today to $ 1.6 Billion in agents as a suitable way to warranty the robustness on the 2007 [20]. A first series of commercially nanoproducts has proposed model. Thereby the presented paper summarizes as well been announced also as foreseeable for 2007, and to reach this distinct aspects of some techniques required to achieve a goal of build organic electronics, firms are forming successful nano-planning system design and its simulation collaborations and alliances that bring together new visualization in real time. nanoproducts through the joint effort from companies such as IBM, Motorola, Philips Electronics, PARC, Xerox, Hewlett Index Terms—Biomedical computing, control systems, genetic algorithms, mobile robots, nanotechnology, virtual reality. Packard, Dow Chemical, Bell Laboratories, Intel Corp., just to quote a few ones [13], [20]. Building patterns and manipulating atoms with the use of I.INTRODUCTION Scanning Probe Microscope (SPM) such as Atomic Force he presented paper describe the design and simulation of Microscopy and Scanning Tunneling Microscopy has been Ta mobile nanorobot in atomic scales to perform used with satisfactory success as a promising approach for the biomolecular assembly manipulation for nanomedicine [12].
    [Show full text]
  • Artificial Intelligence, Automation, and Work
    Artificial Intelligence, Automation, and Work The Economics of Artifi cial Intelligence National Bureau of Economic Research Conference Report The Economics of Artifi cial Intelligence: An Agenda Edited by Ajay Agrawal, Joshua Gans, and Avi Goldfarb The University of Chicago Press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2019 by the National Bureau of Economic Research, Inc. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations in critical articles and reviews. For more information, contact the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637. Published 2019 Printed in the United States of America 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 ISBN-13: 978-0-226-61333-8 (cloth) ISBN-13: 978-0-226-61347-5 (e-book) DOI: https:// doi .org / 10 .7208 / chicago / 9780226613475 .001 .0001 Library of Congress Cataloging-in-Publication Data Names: Agrawal, Ajay, editor. | Gans, Joshua, 1968– editor. | Goldfarb, Avi, editor. Title: The economics of artifi cial intelligence : an agenda / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, editors. Other titles: National Bureau of Economic Research conference report. Description: Chicago ; London : The University of Chicago Press, 2019. | Series: National Bureau of Economic Research conference report | Includes bibliographical references and index. Identifi ers: LCCN 2018037552 | ISBN 9780226613338 (cloth : alk. paper) | ISBN 9780226613475 (ebook) Subjects: LCSH: Artifi cial intelligence—Economic aspects. Classifi cation: LCC TA347.A78 E365 2019 | DDC 338.4/ 70063—dc23 LC record available at https:// lccn .loc .gov / 2018037552 ♾ This paper meets the requirements of ANSI/ NISO Z39.48-1992 (Permanence of Paper).
    [Show full text]
  • Control in Robotics
    Control in Robotics Mark W. Spong and Masayuki Fujita Introduction The interplay between robotics and control theory has a rich history extending back over half a century. We begin this section of the report by briefly reviewing the history of this interplay, focusing on fundamentals—how control theory has enabled solutions to fundamental problems in robotics and how problems in robotics have motivated the development of new control theory. We focus primarily on the early years, as the importance of new results often takes considerable time to be fully appreciated and to have an impact on practical applications. Progress in robotics has been especially rapid in the last decade or two, and the future continues to look bright. Robotics was dominated early on by the machine tool industry. As such, the early philosophy in the design of robots was to design mechanisms to be as stiff as possible with each axis (joint) controlled independently as a single-input/single-output (SISO) linear system. Point-to-point control enabled simple tasks such as materials transfer and spot welding. Continuous-path tracking enabled more complex tasks such as arc welding and spray painting. Sensing of the external environment was limited or nonexistent. Consideration of more advanced tasks such as assembly required regulation of contact forces and moments. Higher speed operation and higher payload-to-weight ratios required an increased understanding of the complex, interconnected nonlinear dynamics of robots. This requirement motivated the development of new theoretical results in nonlinear, robust, and adaptive control, which in turn enabled more sophisticated applications. Today, robot control systems are highly advanced with integrated force and vision systems.
    [Show full text]
  • Detecting Automation of Twitter Accounts: Are You a Human, Bot, Or Cyborg?
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 9, NO. X, XXXXXXX 2012 1 Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg? Zi Chu, Steven Gianvecchio, Haining Wang, Senior Member, IEEE, and Sushil Jajodia, Senior Member, IEEE Abstract—Twitter is a new web application playing dual roles of online social networking and microblogging. Users communicate with each other by publishing text-based posts. The popularity and open structure of Twitter have attracted a large number of automated programs, known as bots, which appear to be a double-edged sword to Twitter. Legitimate bots generate a large amount of benign tweets delivering news and updating feeds, while malicious bots spread spam or malicious contents. More interestingly, in the middle between human and bot, there has emerged cyborg referred to either bot-assisted human or human-assisted bot. To assist human users in identifying who they are interacting with, this paper focuses on the classification of human, bot, and cyborg accounts on Twitter. We first conduct a set of large-scale measurements with a collection of over 500,000 accounts. We observe the difference among human, bot, and cyborg in terms of tweeting behavior, tweet content, and account properties. Based on the measurement results, we propose a classification system that includes the following four parts: 1) an entropy-based component, 2) a spam detection component, 3) an account properties component, and 4) a decision maker. It uses the combination of features extracted from an unknown user to determine the likelihood of being a human, bot, or cyborg. Our experimental evaluation demonstrates the efficacy of the proposed classification system.
    [Show full text]
  • 2.1: What Is Robotics? a Robot Is a Programmable Mechanical Device
    2.1: What is Robotics? A robot is a programmable mechanical device that can perform tasks and interact with its environment, without the aid of human interaction. Robotics is the science and technology behind the design, manufacturing and application of robots. The word robot was coined by the Czech playwright Karel Capek in 1921. He wrote a play called “Rossum's Universal Robots” that was about a slave class of manufactured human-like servants and their struggle for freedom. The Czech word robota loosely means "compulsive servitude.” The word robotics was first used by the famous science fiction writer, Isaac Asimov, in 1941. 2.1: What is Robotics? Basic Components of a Robot The components of a robot are the body/frame, control system, manipulators, and drivetrain. Body/frame: The body or frame can be of any shape and size. Essentially, the body/frame provides the structure of the robot. Most people are comfortable with human-sized and shaped robots that they have seen in movies, but the majority of actual robots look nothing like humans. Typically, robots are designed more for function than appearance. Control System: The control system of a robot is equivalent to the central nervous system of a human. It coordinates and controls all aspects of the robot. Sensors provide feedback based on the robot’s surroundings, which is then sent to the Central Processing Unit (CPU). The CPU filters this information through the robot’s programming and makes decisions based on logic. The same can be done with a variety of inputs or human commands.
    [Show full text]
  • Design and Implementation of Home Automation System
    DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI A Project Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfilment of the Requirements for the Degree Master of Science in Computer Science By Irwin Soni 2018 SIGNATURE PAGE PROJECT: DESIGN AND IMPLEMENTATION OF HOME AUTOMATION SYSTEM USING RASPBERRY PI AUTHOR: Irwin Soni DATE SUBMITTED: Spring 2018 Computer Science Department Dr. Yu Sun Project Committee Chair Computer Science Dr. Sampath Jayarathna Computer Science ii ACKNOWLEDGEMENT First and foremost, I would like to thank God for blessing me with such amazing people who have been there to support me in all that I have achieved. To my parents, who have filled my life with immense love, happiness and shaping me into the person I have become today. I would like to thank Dr. Yu Sun, my project advisor, for his selfless support and enlightening guidance. Working with Dr. Sun was such a valuable experience of learning computer science and life at the same time. I would also like to thank Dr. Sampath Jayarathna for his review, suggestions and encouragement. I would also like to thank my classmates for their companionship and friendship. iii ABSTRACT Home automation system achieved great popularity in the last decades as it increases the comfort and quality of life. Smartphone applications are used to control and monitor the home appliances using different types of communication techniques. As mobile devices continue to grow in popularity and functionality, the demand for advanced ubiquitous mobile applications in our daily lives also increases. The paper deals with the design and implementation of a flexible and low-cost Home Automation System for various mobile devices that leverages mobile technology to provide essential functionalities to our homes and associated control operations.
    [Show full text]
  • Robots, Automation, and Employment: Where We Are
    WORKING PAPER SERIES ROBOTS, AUTOMATION, AND EMPLOYMENT: WHERE WE ARE Lukas Wolters PhD Candidate MIT Political Science [email protected] MIT Work of the Future Working Paper 05-2020 Date: May 26, 2020 400 Main Street, E19-733, Cambridge, MA 02139 Robots, Automation, and Employment: Where We Are∗ Lukas Woltersy May 26, 2020 Introduction “Robots will destroy our jobs – and we’re not ready for it” titled The Guardian in early 2017.1 Headlines like this have become more and more common over the past couple of years, with newspapers and media outlets reporting that “the robots are coming! And they are going to take all our jobs,“2 asserting that “sometime in the next 40 years, robots are going to take your job,”3 and that “robots may steal as many as 800 million jobs in the next 13 years,”4 and proclaiming gloomy headlines such as “automation threatening 25% of jobs in the US,”5 and “robots to replace up to 20 million factory jobs by 2030.”6 While idea that technology can render human labor obsolete is not new, and concerns about technological unemployment go back at least to Keynes (1930; p. 3) who in 1930 wrote about potential unemployment “due to our discovery of means of economizing the use of labor outrunning the pace at which we can find new uses for labor,” the recent proliferation of reports warning about the potential effect of new technologies, particularly advances in machine learning and robotics, on employment stands out in terms of the number of jobs allegedly under threat of replacement by machines and obsolescence.
    [Show full text]
  • History of Robotics: Timeline
    History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios.
    [Show full text]
  • Chapter 4 China's High-Tech Development
    CHAPTER 4 CHINA’S HIGH-TECH DEVELOPMENT SECTION 1: CHINA’S PURSUIT OF DOMINANCE IN COMPUTING, ROBOTICS, AND BIOTECHNOLOGY Key Findings • China has laid out an ambitious whole-of-government plan to achieve dominance in advanced technology. This state-led ap- proach utilizes government financing and regulations, high market access and investment barriers for foreign firms, over- seas acquisitions and talent recruitment, and, in some cases, industrial espionage to create globally competitive firms. • China’s close integration of civilian and military technology de- velopment raises concerns that technology, expertise, and intel- lectual property shared by U.S. firms with Chinese commercial partners could be transferred to China’s military. • Artificialintelligence: China—led by Baidu—is now on par with the United States in artificial intelligence due in part to robust Chinese government support, establishment of research insti- tutes in the United States, recruitment of U.S.-based talent, investment in U.S. artificial intelligence-related startups and firms, and commercial and academic partnerships. • Quantum information science: China has closed the technolog- ical gap with the United States in quantum information sci- ence—a sector the United States has long dominated—due to a concerted strategy by the Chinese government and inconsistent and unstable levels of R&D funding and limited government coordination by the United States. • High performance computing: Through multilevel government support, China now has the world’s two fastest supercomputers and is on track to surpass the United States in the next gener- ation of supercomputers—exascale computers—with an expect- ed rollout by 2020 compared to the accelerated U.S.
    [Show full text]
  • Three Dimensional Stochastic Reconfiguration of Modular Robots
    Three Dimensional Stochastic Reconfiguration of Modular Robots Paul White∗†, Victor Zykov†, Josh Bongard†, and Hod Lipson† †Computational Synthesis Laboratory Cornell University, Ithaca, NY 14853 Email: [vz25 | josh.bongard | hod.lipson]@cornell.edu ∗Lockheed Martin Corporation, King of Prussia, PA 19406 Email: [email protected] Abstract— Here we introduce one simulated and two physical prototypes of Molecules [6][7], modules that have a pair of three-dimensional stochastic modular robot systems, all capable two degree-of-freedom atoms and can successfully form 3D of self-assembly and self-reconfiguration. We assume that indi- shapes. Murata et al originally developed the Fracta robot vidual units can only draw power when attached to the growing structure, and have no means of actuation. Instead they are system [8][9], which can reconfigure by rotating units about subject to random motion induced by the surrounding medium each other. Tomita et al [10] have since extended this work when unattached. We present a simulation environment with a to a system in which modules can climb over one another, flexible scripting language that allows for parallel and serial self- and Yoshida et al [11] have developed a miniaturized self- assembly and self-reconfiguration processes. We explore factors reconfigurable robot. Ichikawa et al [12] have demonstrated that govern the rate of assembly and reconfiguration, and show that self-reconfiguration can be exploited to accelerate a collective robotics system in which individual robots can the assembly of a particular shape, as compared with static attach and detach from each other to form variable multi- self-assembly. We then demonstrate the ability of two different robot structures.
    [Show full text]