Korthalsella: Viscaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"Santalales (Including Mistletoes)"
Santalales (Including Introductory article Mistletoes) Article Contents . Introduction Daniel L Nickrent, Southern Illinois University, Carbondale, Illinois, USA . Taxonomy and Phylogenetics . Morphology, Life Cycle and Ecology . Biogeography of Mistletoes . Importance of Mistletoes Online posting date: 15th March 2011 Mistletoes are flowering plants in the sandalwood order that produce some of their own sugars via photosynthesis (Santalales) that parasitise tree branches. They evolved to holoparasites that do not photosynthesise. Holopar- five separate times in the order and are today represented asites are thus totally dependent on their host plant for by 88 genera and nearly 1600 species. Loranthaceae nutrients. Up until recently, all members of Santalales were considered hemiparasites. Molecular phylogenetic ana- (c. 1000 species) and Viscaceae (550 species) have the lyses have shown that the holoparasite family Balano- highest species diversity. In South America Misodendrum phoraceae is part of this order (Nickrent et al., 2005; (a parasite of Nothofagus) is the first to have evolved Barkman et al., 2007), however, its relationship to other the mistletoe habit ca. 80 million years ago. The family families is yet to be determined. See also: Nutrient Amphorogynaceae is of interest because some of its Acquisition, Assimilation and Utilization; Parasitism: the members are transitional between root and stem para- Variety of Parasites sites. Many mistletoes have developed mutualistic rela- The sandalwood order is of interest from the standpoint tionships with birds that act as both pollinators and seed of the evolution of parasitism because three early diverging dispersers. Although some mistletoes are serious patho- families (comprising 12 genera and 58 species) are auto- gens of forest and commercial trees (e.g. -
New Exotic Host for the Dwarf Mistletoe Korthalsella Salicornioides
TRILEPIDEA Newsletter of the New Zealand Plant Conservation Network NO. 201 New exotic host for the dwarf mistletoe Korthalsella salicornioides August 2020 John Barkla ([email protected]) Deadline for next issue: On 16 August 2020, while walking Friday 16 September 2020 the Abel Tasman Coastal Track, I SUBMIT AN ARTICLE observed and photographed the dwarf TO THE NEWSLETTER mistletoe Korthalsella salicornioides Contributions are welcome [Viscaceae] hemiparasitic on its gorse to the newsletter at any (Ulex europaeus [Fabaceae]) host. One time. The closing date for gorse shrub was observed hosting articles for each issue is approximately the 15th of several large plants of Korthalsella each month. salicornioides (Fig. 1). Articles may be edited and used in the newsletter and/ Th e site is on gentle hill country, or on the website news page. approximately 60 metres above sea Figure 1. Korthalsella salicornioides hemiparasitic on The Network will publish level and located about halfway gorse. Abel Tasman National Park, 16 August 2020. almost any article about between Th e Anchorage and Watering Photo: John Barkla. plants and plant conservation Cove. Trackside vegetation here comprises coastal shrubland dominated by kanuka with a particular focus on the plant life of New Zealand and (Kunzea ericoides) with manuka (Leptospermum scoparium) and prickly mingimingi Oceania. (Leptocophylla juniperina subsp. juniperina) both common. Gorse is sporadically Please send news items present, occupying otherwise bare ground that may be a result of the track’s or event information to construction and maintenance. [email protected] Postal address: Korthalsella salicornioides was abundant on host kanuka growing in close proximity c/- 160 Wilton Road to the gorse shrub host. -
Heterotrophic Carbon Gain and Mineral Nutrition of the Root Hemi-Parasite Santalum Album L
128 Heterotrophic carbon gain and mineral nutrition of Santa fum album L. Heterotrophic carbon gain and mineral nutrition of the root hemi-parasite Santalum album L. in pot culture with different hosts. Andrew M. Radomiljaci.2·A, Jen A. McComb2 and JohnS. Pate3 1Present address: Department of Conservation and Land Management, CALMSharefarms Maritime Pine, Lot 1, 260 Kalamunda Road, South Guilford, 6055, Western Australia 2Division of Science, Biological Sciences, Murdoch University, Perth 6150, Western Australia 3Department of Botany, University of Western Australia, Nedlands, Perth 6907, Western Australia Revised manuscript received 8 January 1999 Summary tices in relation to the best host species, and how to achieve This paper examines heterotrophic gain of carbon and min the highest volume and quality of sandalwood in a particular eral composition of Santalum album partnered singly in pot set of environmental circumstances. culture with three beneficial woody N,-tixing hosts and a non Our current projects, aimed at defining the best protocols for beneficial eucalypt host. Based on dry matter gains of the growth of S. album under irrigation culture in the Ord River parasite at 33 weeks, Sesbaniaformosa proved the best host region of North West Australia, have utilised a native herba followed by Acacia ampliceps and A. trachycarpa while no ceous perennial, Alternanthera nana R. Br., as a host during improvement in growth was seen with Eucalyptus pot culture with seedlings of the parasite, followed by use of camaldulensis as a host in comparison with Santalum grown various fast growing but relatively short lived species as 'in without a host. Numbers of haustoria formed by Santalum termediate hosts' once plants are transferred to the field. -
Phyllosticta Capitalensis, a Widespread Endophyte of Plants
Fungal Diversity DOI 10.1007/s13225-013-0235-8 Phyllosticta capitalensis, a widespread endophyte of plants Saowanee Wikee & Lorenzo Lombard & Pedro W. Crous & Chiharu Nakashima & Keiichi Motohashi & Ekachai Chukeatirote & Siti A. Alias & Eric H. C. McKenzie & Kevin D. Hyde Received: 21 February 2013 /Accepted: 9 April 2013 # Mushroom Research Foundation 2013 Abstract Phyllosticta capitalensis is an endophyte and weak capitalensis is commonly found associated with lesions of plants, plant pathogen with a worldwide distribution presently known and often incorrectly identified as a species of quarantine impor- from 70 plant families. This study isolated P. capitalensis from tance, which again has implications for trade in agricultural and different host plants in northern Thailand, and determined their forestry production. different life modes. Thirty strains of P. capitalensis were isolated as endophytes from 20 hosts. An additional 30 strains of P. Keywords Guignardia . Leaf spot . Morphology . capitalensis from other hosts and geographic locations were also Molecular phylogeny . Quarantine obtained from established culture collections. Phylogenetic anal- ysis using ITS, ACT and TEF gene data confirmed the identity of all isolates. Pathogenicity tests with five strains of P. capitalensis Introduction originating from different hosts were completed on their respec- tive host plants. In all cases there was no infection of healthy Species in the genus Phyllosticta are mostly plant pathogens leaves, indicating that this endophyte does not cause disease on of a wide range of hosts and are responsible for diseases healthy, unstressed host plants. That P. capitalensis is often including leaf spots and black spots on fruits (Wulandari et isolated as an endophyte has important implications in fungal al. -
Farming in North Otago
FARMING IN NORTH OTAGO J. D. CURRIE Ministry of Agriculture and Fisheries, Oarnaru Abstract North Otago is a well-established, efficiently farmed district. Primary production, which grossed an estimated $20 million in the 1973-4 season, will continue to be the major source of regional revenue. The geographic character and the soil resources of the district are described with a comprehensive coverage of historical development, current farming practices and future opportunities for pastoral development. The principal factor limiting agriculture in North Otago is a climate characterized by low, variable rainfall. Pastoral potential is closely tied to investment in oversowing, lucerne and irrigation. Successful farming under difhcult environmental conditions demands above-average ability. The managerial skill of North Otago’s farmers is an outstanding regional resource that augurs well for the future. GEOGRAPHIC DESCRIPTION NORTH OTAGO is a well-defined region. The northern, Canterbury, boundary follows the Waitaki River to its snowfield source in the Southern Alps beyond Lake Ohau. Above Kurow are the hydro dams, below Kurow the river remains as a broad natural boundary, flowing in swift braided channels down a bouldery bed to the sea. The southern boundary that isolates North Otago from its parent province is a mountain wall running north-west from Shag Point to the Lindis Pass and on to the Alps. A fork in the mountains that sweep round from Danseys Pass to Kurow divides North Otago into two districts that are distinct in nature and development. Inland, at Omarama, the sparsely populated run country is similar to Central Otago. Below Kurow is the more closely settled country, The moun- tains and foothills are only suited to extensive grazing, but most of the lower country is made up of rolling loessial downs, good natural grassland, much of it arable. -
Alps 2 Ocean Cycle Trail Visitor Survey 2020
LEAP Research Report No. 52 Alps 2 Ocean Cycle Trail Visitor Survey 2020 Lena Mkwara David Simmons Geoffrey Kerr November 2020 Alps 2 Ocean Cycle Trail Visitor Survey 2020 Lena Mkwara David Simmons Geoffrey Kerr Land Environment and People Research Report Report No. 52 November 2020 ISSN 1172-0859 (Print) ISSN 1172-0891 (PDF) ISBN 978-0-86476-452-2 (Print) ISBN 978-0-86476-455-3 (PDF) Lincoln University, Canterbury, New Zealand Abstract This report presents the findings from a 2020 survey of Alps 2 Ocean Cycle Trail (A2O) cyclists. COVID-19 cancelled fieldwork before data collection was complete. The limited data indicate that cyclists are extremely satisfied with the A2O and associated services, and make substantial expenditures associated with their ride. The A2O was a strong attractant to cyclists, the large majority of whom would not have visited the districts in the absence of the trail. Keywords A2O Cycle Trail, tourist attractions, tourism spending, economic attribution model, Mackenzie District, Waitaki District Acknowledgements This project benefitted immensely from the contributions of others. We wish to thank the following people for their generosity and assistance. Waitaki District Council, Tourism Waitaki and Cycle Journeys for their guidance and support. Accommodation providers and visitor centre operators who assisted with the distribution of survey cards. Lincoln University colleagues who peer reviewed the survey instrument. Dr Sally Driml, University of Queensland, for peer review of the survey instrument and the economic attribution model. Dr Yvonne Mathews, University of Waikato/Waikato Regional Council, for structuring the interactive mapping inputs. Dr Bentry Mkwara for GIS mapping assistance. -
NIWA Lake Benmore Model Assessment Nutrient Load Effects
Updated model assessment of the effects of increased nutrient loads into Lake Benmore Prepared for Environment Canterbury August 2015 Prepared by : Bob Spigel (NIWA) David Plew (NIWA) David Hamilton (University of Waikato) Donna Sutherland (NIWA) Clive Howard-Williams (NIWA) For any information regarding this report please contact: Bob Spigel Scientist Hydrodynamics +64-3-343 8020 [email protected] National Institute of Water & Atmospheric Research Ltd PO Box 8602 Riccarton Christchurch 8011 Phone +64 3 348 8987 NIWA CLIENT REPORT No: CHC2015-089 Report date: August 2015 NIWA Project: ENC14506 Quality Assurance Statement Reviewed by: Sandy Elliot Approved for release John Quinn by: Ohau C Canal inflow entering Haldon Arm, Lake Benmore. [Donna Sutherland, NIWA] © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Extended summary ............................................................................................................ -
The Genus Mycosphaerella and Its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines
COMMONWEALTH MYCOLOGICAL INSTITUTE Issued August 1984 Mycological Papers, No. 153 The Genus Mycosphaerella and its Anamorphs Cercoseptoria, Dothistroma and Lecanosticta on Pines H. C. EVANS 1 SUMMARY Three important pine needle pathogens, with teleomorphs assigned to th~ genus Mycosphaerella Johanson, are described: M. dearnessii Barr; M. pini (E. Rostrup apud Munk) and M. gibsonii sp. novo Historical, morphological, ecological and pathological details are presented and discussed, based on the results of a three-year survey of Central American pine forests and supplemented by an examination of worldwide collections. The fungi, much better known by their anamorphs and the diseases they cause: Lecanosticta acicola (Thurn.) H. Sydow (Lecanosticta or brown-spot needle blight); Dothistroma septospora (Doroguine) Morelet (Dothistroma or red-band needle blight) and Cercoseptoria pini• densiflorae (Hori & Nambu) Deighton (Cercospora or brown needle blight), are considered to be indigenous to Central America, constituting part of the needle mycoflora of native pine species. M. dearnessii commonly occurred on pines in all the life zones investigated (tropical to temperate), M. pini was locally abundant in cloud forests but confined to this habitat, whilst M. gibsonii was rare. Significant, environmentally-related changes were noted in the anamorph of M. dearnessii from different collections. Conidia collected from pines growing in habitats exposed to a high light intensity were generally larger, more pigmented and ornamented compared with those from upland or cloud forest regions. These findings are discussed in relation to the parameters governing taxonomic significance. An appendix is included in which various pine-needle fungi collected in Central America, and thought likely to be confused with the aforementioned Mycosphaerella anamorphs are described: Lecanosticta cinerea (Dearn.) comb. -
Lake Ohau Lodge to Omarama
SH80 km SECTION 4: Lake Ohau Lodge to Omarama 40 SH8 FITNESS: Intermediate SKILL:Intermediate TRAFFIC: Low GRADE: 3 PUKAKI CANAL 4 LAKE OHAU LODGE Ben Ohau Rd Glen Lyon Rd SKIFIELD CREEK Glen Lyon Rd BEN OHAU Manuka Tce LAKE OHAU Old Glen Lyon Rd PARSONS CREEK TWIZEL 3 Lake Ohau Max Smith Dr SAWYERS CREEK Rd Glen LyonOHAU Road CANAL FREEHOLD CREEK LAKE OHAU VILLAGE OHAU RIVER OHAU WEIR FLOOD ROUTE Tambrae Track LAKE RUATANIWHA LAKE MIDDLETON SH8 OHAU WEIR Lake Ohau Track Maori Swamp High Point Lake Ohau Rd HISTORIC WOOLSHED Quailburn Rd N LEVEL 1000 BENMORE RANGE 800 SH8 AORAKI/MOUNT COOK AORAKI/MOUNT LAKE OHAU LODGE LAKE OHAU 600 BRAEMAR STATION TWIZEL OMARAMA 400 OTEMATATA KUROW Quailburn Rd 200 DUNTROON OAMARU 0 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Henburn Rd KEY: Onroad Off-road trail Ohau Weir flood route Picnic Area Prohibition Rd AHURIRI RIVER 0 1 2 3 4 5km CLAY CLIFFS Scale OMARAMA 5 www.alps2ocean.com SH83 SH8 Map current as of 24/9/13 Starting from the Lake Ohau Lodge descent to Quailburn Road [18.3km]. to see the Clay Cliffs (14km return). driveway, the trail traverses the lower From the Quailburn Road intersection you When Quailburn Road meets the slopes of the Ruataniwha Conservation can detour 2km to the historic woolshed highway [35.6km], the off-road trail winds Park, with stunning views back across the at the end of Quailburn Road (where alongside below the highway edge. basin to the Benmore Range. -
Flora of South Australia 5Th Edition | Edited by Jürgen Kellermann
Flora of South Australia 5th Edition | Edited by Jürgen Kellermann KEY TO FAMILIES1 J.P. Jessop2 The sequence of families used in this Flora follows closely the one adopted by the Australian Plant Census (www.anbg.gov. au/chah/apc), which in turn is based on that of the Angiosperm Phylogeny Group (APG III 2009) and Mabberley’s Plant Book (Mabberley 2008). It differs from previous editions of the Flora, which were mainly based on the classification system of Engler & Gilg (1919). A list of all families recognised in this Flora is printed in the inside cover pages with families already published highlighted in bold. The up-take of this new system by the State Herbarium of South Australia is still in progress and the S.A. Census database (www.flora.sa.gov.au/census.shtml) still uses the old classification of families. The Australian Plant Census web-site presents comparison tables of the old and new systems on family and genus level. A good overview of all families can be found in Heywood et al. (2007) and Stevens (2001–), although these authors accept a slightly different family classification. A number of names with which people using this key may be familiar but are not employed in the system used in this work have been included for convenience and are enclosed on quotation marks. 1. Plants reproducing by spores and not producing flowers (“Ferns and lycopods”) 2. Aerial shoots either dichotomously branched, with scale leaves and 3-lobed sporophores or plants with fronds consisting of a simple or divided sterile blade and a simple or branched spikelike sporophore .................................................................................. -
Morphology, Geographic Distribution, and Host Preferences Are Poor
bioRxiv preprint doi: https://doi.org/10.1101/433359; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Research Article Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus Viscum L. Karola Maul1, Michael Krug1, Daniel L. Nickrent2, Kai F. Müller3, Dietmar Quandt1, and Susann Wicke3* 1Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany; 2Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901-6509, USA; 3Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149 Muenster, Germany; Author for Correspondence is: Dr. S. Wicke, phone: +49 (0) 251 83 21644, email: [email protected] Research article containing 6,200 words, 4 color figures, 1 table; 6 additional figures and 7 additional tables are provided as supporting information. All raw data files and original phylogenetic trees are available from Mendeley Data. bioRxiv preprint doi: https://doi.org/10.1101/433359; this version posted October 2, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract (250 words max.) 2 Besides their alleged therapeutic effects, mistletoes of the genus Viscum L. -
Diagnosis of Mycosphaerella Spp., Responsible for Mycosphaerella Leaf Spot Diseases of Bananas and Plantains, Through Morphotaxonomic Observations
Banana protocol Diagnosis of Mycosphaerella spp., responsible for Mycosphaerella leaf spot diseases of bananas and plantains, through morphotaxonomic observations Marie-Françoise ZAPATER1, Catherine ABADIE2*, Luc PIGNOLET1, Jean CARLIER1, Xavier MOURICHON1 1 CIRAD-Bios, UMR BGPI, Diagnosis of Mycosphaerella spp., responsible for Mycosphaerella leaf spot TA A 54 / K, diseases of bananas and plantains, through morphotaxonomic observations. 34398, Montpellier Cedex 5, Abstract –– Introduction. This protocol aims to diagnose under laboratory conditions the France main Mycosphaerella spp. pathogens of bananas and plantains. The three pathogens Mycos- [email protected] phaerella fijiensis (anamorph Paracercospora fijiensis), M. musicola (anamorph Pseudocer- cospora musae) and M. eumusae (anamorph Pseudocercospora eumusae) are, respectively, 2 CIRAD-Bios, UPR Mult. Vég., Stn. Neufchâteau, 97130, the causal agents of Black Leaf Streak disease, Sigatoka disease and Eumusae Leaf Spot Capesterre Belle-Eau, disease. The principle, key advantages, starting plant material and time required for the Guadeloupe, France method are presented. Materials and methods. The laboratory materials required and details of the thirteen steps of the protocols (tissue clearing and in situ microscopic observa- [email protected] tions, isolation on artificial medium and cloning of single-spore isolate, in vitro sporulation and microscopic observations of conidia, and long-term storage of isolates) are described. Results. Diagnosis is based on the observations of anamorphs (conidiophores and conidia) which can be observed directly from banana leaves or after sporulation of cultivated isolates if sporulating lesions are not present on banana samples. France / Musa sp. / Mycosphaerella fijiensis / Mycosphaerella musicola / Mycosphaerella eumusae / foliar diagnosis / microscopy Identification des espèces de Mycosphaerella responsables des cercosprio- ses des bananiers et plantains, par des observations morphotaxonomiques.